今年の4月に施行された法律により、高分子の再生材に関する動向が大きく変化してきた。写真会社で2010年頃に環境対応樹脂としてリサイクル材の採用方針を決め、当時50%以上のPETボトル回収材が輸出されている点に着眼し、PETボトルを基に新樹脂を開発した。
写真会社は、いまや複写機分野で再生材使用率50%以上を達成し、業界のトップランナーとなった。退職日を2011年3月11日に延期し業務を推進してみて良かったと思っている。また、当方が退職後この仕事は社長賞を受賞しており、元部下がその記念品をわざわざ当方に送ってくださった。
ゴム会社を転職した時に辞表を受け取ってくれた上司の依頼で写真会社の業務終了後、高純度SiCの技術伝承のため半年以上無償でゴム会社へ通ったが、もう来なくてよい、という1通の手紙で終わったことと比較すると感動的出来事である。この時の手紙も部下から送られた記念品も大切に保管している。
さて、高分子材料の再生化には二通りの方法があり、一つはケミカルリサイクルであり、他の一つは回収された樹脂を再ペレット化しリサイクルする方法である。LCAの観点では後者が望ましいが、用途が限られる。
なぜなら、バージン材同等の無色の材料を回収できる量が少ないからである。PETボトルやミルクボトル、あるいは天然水サーバー用のガロンボトルなどは無色透明の材料としてリサイクル可能だが多くは着色している。
ゆえに有色のリサイクル材の用途は黒系色分野に限定される。クローズドリサイクルあるいは水平リサイクルを行えば近い色の材料をリサイクル可能となるが、それでもリサイクルできない着色材料の方が多い。
また、高分子材料にはフィラーはじめ各種添加剤が配合されたりしているのでどうしてもケミカルリサイクルが不可欠となる。ゴミからの熱回収技術は日本でかなり進歩したが、欧米標準ではサーマルリサイクルをリサイクルの手段として認めていない。
この問題ゆえにケミカルリサイクルとなるのだが、ケミカルリサイクルについても従来の考え方ではサーマルリサイクルと大差の無いLCA結果になる可能性がある。
新しいアイデアなりコンセプトのケミカルリサイクルが求められているのだが、特許を調査していてもこれといった目新しい技術提案が見つからない。従来の石油コンビナートと異なる考え方として水を使いコロイドプロセスで処理するアイデアがある。
カテゴリー : 一般 学会講習会情報 高分子
pagetop
写真会社に20年間勤務したが、最後の5年間は複写機のキーパーツ開発に従事している。きっかけはPPSの押出成形で半導体無端ベルトを製造していた部長がリーダーを代わってくれ、と言ってきたことから始まっている。
半年後に部品供給しなくてはいけない状況で歩留まりが10%以下なので引き受ける人もいないような仕事だが、当方は幸運にも窓際族となっていたので引き受けている。
窓際に10年勤めるよりもこの歩留まり10%以下の仕事の責任をとってパッと散るのも良いかと思ったわけではない。説明を聞いてゴム会社の指導社員から出された宿題を完成させるにもってこいの仕事と思ったからである。
20年以上も昔の宿題なのでどうでもよいのだが、カオス混合という言葉を忘れられないでいた。カオスを混合するのである。混沌から何が生み出されるのか、ファンタジーの世界である。
しかも、ポリカーボネート(PC)が採用された原因から非常識とも思われる割れやすい、すなわち靭性が低いことで有名なポリフェニレンスルフィド(PPS)で開発をしているところにも魅力を感じた。
PPSの難燃性はPCよりも高い。しかし結晶化しやすい樹脂であり、脆い。さらにこの樹脂のパーコレーションの制御は結晶性樹脂ゆえに難しい。
リーダーを代わってほしい、と言ってきた部長は、割れやすいPPSを割れにくくする技術を開発し成功間近まで来たが、歩留まりをあげることがどうしてもできない、製品化がうまい当方に何とかしてほしい、と頭を下げてきた。
しかし、この割れにくくする技術が歩留まりを下げている大きな原因であることに気がついていない。PPSの靭性を高めるためにPPSに非相溶な6ナイロン(6PA)を配合していた。
これがパーコレーションの制御を難しくする。パーコレーションという現象を理解しておればコンパウンドの設計をもう少し気の利いた配合にする。
特許を調査してPPSの配合設計思想を研究したところ、靭性改善に関する発明が多く6PAの配合アイデアは高分子技術では国内で一流のT社から特許出願されており、海島構造の相分離が公知となっていた。
このような高次構造の材料に導電性が良いカーボン粒子を添加してパーコレーションを制御したいならば、6PA相にカーボンをすべて偏在させるような設計にしなければ導電性の盛業が難しくなる。
パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門PRセミナーの受講者を募集中です。
セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop
ポリカーボネート(PC)の難燃性について先日書いたが、PCは燃えにくいだけでなく靭性すなわち割れにくさが他の樹脂に比較しレベルが高い。それゆえ低価格カラーレーザープリンターの中間転写ベルトに用いられたりする。
割れにくく、燃えにくいPCだがケミカルアタックには弱い傾向がある。樹脂そのもののケミカルアタック耐性を評価すると、他の樹脂と変わらないが、射出成形体におけるウェルド部は他の樹脂同様の泣き所である。
外装材としてPC/ABSやPC/PS、PC/PETが用いられたりしているが、金型の設計上避けられないウェルド部はしばしばケミカルアタックの発生で悩まされる。
さて、PC製中間転写ベルトの話に戻るが、そもそも高級機にはポリイミド樹脂(PI)が用いられる。機械強度も高く難燃性も高いのでPIがその材料として最適であるが、溶媒キャスト成膜法で製造されるので高価であり環境対応(LCA)の観点でPIは不利である。
低コストのカラーレーザープリンターの中間転写ベルトでPCが用いられる理由は、最初に述べた物性ゆえであるが、この高分子が結晶化しにくい樹脂であることも影響している。
中間転写ベルトは半導体部品であり、絶縁体高分子に導電性カーボンを分散して電気特性を調整している。結晶化速度の速い樹脂では、押出成形でパーコレーションの制御が難しくなる。
このパーコレーションについては、今月と来月にPythonのセミナーでプログラムの題材として説明するので興味のあるかたはセミナーを受講していただきたい。
PCは完全な非晶性樹脂ではないが、結晶化速度が遅いゆえに非晶質状態で成形体を得ることが可能であり、それゆえ押出成形でパーコレーションの制御が容易なだけでなく、結晶化に伴う靭性低下を回避でき難燃性も高いので中間転写ベルトのような動的部品に使われるようになった。
パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門PRセミナーの受講者を募集中です。
セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop
配合設計でパーコレーション転移を安定化させることができるのか。答えは「できる」である。酸化スズゾルを用いた感材の帯電防止と、複写機用中間転写ベルトでその実績がある。
前者は最適なバインダーの選択であり、後者はWパーコレーション転移である。後者のWパーコレ-ションはシミュレーションを用いて、実現可能性を見出している。
酸化スズゾルを用いた帯電防止層では、シミュレーションで求められたパーコレーションカーブを頼りにバインダーの選択を行っている。
この時用いたシミュレーションは、スタウファーの教科書に書かれた難しい数式で行っていない。直感で理解しやすい立方体充填モデルでシミュレーション実験を行っている。詳細は、今月と来月予定しているPythonのセミナーで解説予定。
弊社のPythonセミナーは、ソフトウェアー会社が開催しているような単なるコンピューター言語の解説ではない。実務で実績のある事例をもとにコードを公開し、プログラミングの勉強ができるように工夫している。
また、今回は一般のプログラミングの教科書であまり扱われていない乱数のアルゴリズムについても解説予定でいるので、材料系以外の方にも参考になります。
パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門PRセミナーの受講者を募集中です。
セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop
電子機器の外装材に使用されるポリカーボネートは空気中で自己消火性を示すが、ポストコンシューマー材のリサイクルPCは可燃性となる。LOI値で19から20程度である。
原因をIRで調べると透明アクリル樹脂不純物が検出されたりする。ただ10%未満であり、難燃性低下をうまく説明できない。
この難燃性低下をうまく説明できないが、BDPなどの難燃剤を添加すればLOIは21以上となるのでリサイクルPC系ポリマーアロイのクローズドリサイクルは容易と言われたりする。
ところが現実は簡単な話にならない。UL94-V2レベルであれば、リサイクル材に難燃剤を追加せずに材料設計する方法もあるが、UL94-5Vbレベルになると難燃性樹脂として再度設計しなおさなければいけない。
2000年ごろに、リサイクルしても難燃性が低下しない樹脂、という特許を見た記憶があるが、この技術発明はクローズドリサイクルが前提となるだろう。
他社製品のPC系樹脂が混入してくる場合には、UL94-5Vbレベルであれば再度設計しなおす必要がある。このような事情から、リサイクル分野では、高度な難燃性が保持される樹脂というのは特許発明になる可能性が今でもある。
例えば、それを想定した技術をすでに弊社は発明として公開している。審査請求をしなかったのは共同出願企業が再生樹脂事業者の戦略的判断からである。すなわち混練技術が重要な要素を占めているためである。
カテゴリー : 一般 高分子
pagetop
高分子材料にフィラーを分散したり、海島構造に相分離する系ではパーコレーション転移が観察される。パーコレーションは、コロナウィルスでも話題になったクラスターが生成する現象である。
絶縁性高分子に真球の導電性粒子を混合してゆくと、体積分率(全体を1)で0.2を過ぎたところから電気抵抗が大きくばらつく現象が観察される。0.25を過ぎると抵抗は4桁以上ばらつくケースもある。
これが0.5を過ぎたあたりから安定な無限クラスターが生成するので導電性も安定化するのだが、0.2-0.5のあたりで急激に電気が湧き出てきたような導電性の変化が生じる。
これがパーコレーション転移である。このパーコレーション転移は、導電性の現象だけでなく力学物性にも観察されるが、導電性の現象に比較して変化が小さいのであまり問題とされていない。
線膨張率や弾性率で観察されるパーコレーション転移については、パーコレーションすなわち浸透理論で議論されず、1990年ごろまで混合則で議論されてきた。
パーコレーションでこのような変化が材料分野で議論されるようになったのはこの30年間のことである。数学的な扱いになると山火事をモデルにして1950年代に議論されて、数学の世界ではn次元の現象まで考察されている。また、その成果はこの2年間ウィルス感染者の予測などでも活かされている。
しかし、パーコレーションと言う現象の数学的理解は材料屋にとって障壁が高い。またその障壁を超えてみても、直接配合設計に活かせないから困る。このような悩みをゴム会社の新入社員時代にしている。
この欄で「花王のパソコン革命」という書籍が出版された時代の笑い話(注)として書いたが、今でいうところのパワハラ上司から業務に用いるマイコンを自分で買うように言われ、年収の手取りで半分近いお金をだしてシステムを揃えた。
それだけお金を出したので必死になってコンピュータでできる仕事を独身寮で模索しながら検討していた。その中の一つのテーマがパーコレーションの簡単なコンピューター実験だった。
(注)今世間でパワハラやセクハラなど様々なハラスメントや性差別の問題が取り上げられ、それらの排除が芸能人まで求められている。かつての職場ではこれらが日常的であり、またそれが家庭的環境と誤解されていた時代があった。当方がゴム会社に入社しその惨状に驚いただけでなく、悩み、その結果転職している。当時上司は絶対的存在であり、ある日、業務中に上司の気分が悪くなったという理由で、上司の車を代行運転し、自宅まで送り届けた出来事があった。当方は着替える余裕もなかったので作業着のスタイルであったが、タクシーを呼んでもらえずバスで会社に戻って仕事をするように命じられている。交通費の請求を先輩社員に相談しているが、会社に請求できないからバスを使うように上司が命じたことを理解できないのかと諭された。同期の友人に話したところ、この程度で憤りを感じるのは甘く、上司の引越しの手伝いでの一コマの話を聞いたが、ここで書いたならば信じてもらえないだけでなく逆にこの欄の信頼性を疑われるようなあまりの出来事であった。そんな時代であっても皆我慢して仕事に励んでいた。香川氏の問題が連日報じられている。皆が道徳的に他を尊重し誠実真摯に生きることが求められている時代なのかもしれない。良い時代である。当方がパソコンを購入しなければいけなくなったいきさつを「花王のパソコン革命」という本の出版で引き起こされた出来事として書いているが、問題として労働組合にでも相談すべきだったかもしれない。しかし身銭を切ったおかげで短期に成果を出すことができ、会社の予算でソード社のパソコンを導入することができた。当時としては珍しく2CPU構成で、漢字出力もできた。プリンターなど周辺機器も揃えて200万円前後と高価だった。しかし、当方のパソコンでは多変量解析やパーコレーションのシミュレーションができたが、このパソコンは薬品管理専用ということで基本OSとBASICだけであり、PIPSも走らなかった。
パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門PRセミナーの受講者を募集中です。
セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop
技術開発の担当者でデータサイエンスに疎い技術者は、この情報化時代に時代に合った迅速な仕事ができない。
現象を把握するために実験を行いデータを収集する。科学ならば実験は仮説を立案してから、その仮説の真偽を問う実験が計画される。ところが技術開発では何となくまず実験をやってみよう的な実験が許されている。
これを悪い方法として決めつけてすべて実験は仮説を立ててからやれ、と言われたリーダーが科学の時代ゆえに多かったが、これも極端である。
技術開発では新たな機能発見、すなわち現象から機能を取り出すことが求められているので何となく思い着き実験を行うことは悪いことではない。
ただし、そこから有益な結果の得られる効率は、科学に基づく実験に比較して悪い。科学ならば仮説に基づく実験となり、必ず真偽の結果が得られるので無駄な作業にならない。ただし、否定証明という別の問題が発生するが、本日はその点について述べない。
効率の悪い機能を探索する実験をいつも行っているようでは技術者としての成長が無い。ここはデータサイエンスを導入して、何となく思いついた実験でも効率よく成果に結びつけられるようにしたい。
どのように行ったらよいかは、セミナー会社で事例を基にしたセミナーが開催されているので問い合わせていただきたい。また、今週末には、一例としてパーコレーション転移の実験をコンピューターで行った事例の紹介をする。
土曜日は3時間の無料セミナーとしているので、関心のあるかたは申し込んでいただきたい。無料セミナーを受講されてから有料セミナーを検討される方も歓迎します。
パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門PRセミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 宣伝 電気/電子材料 高分子
pagetop
高分子材料に他の成分を分散して現れる現象を30年以上前まで経験則である混合則で議論されてきた。当方が帯電防止層で観察された現象をパーコレーションで説明した時にも、他のセッションで混合則による考察がなされていたのでパーコレーションが日本で一般化しはじめたのは1990年ごろのことと思っている。
ポリジメチルシランを用いて世界で初めてSiCを合成されたのは矢島先生だが、ポリマーアロイを前駆体にしてSiCを世界で初めて合成したのは当方であることは、無機材質研究所の先生方がご存知で特許もそこから出願されている。
高分子材料の難燃化技術でイントメッセント系の耐熱層が話題となったのは1990年前後だが、当方は燃焼時の熱でガラスを生成し難燃化する技術を1981年に工場試作している。
汎用二軸混練機に伸長流動装置を取り付けたのはウトラッキーであるが、それを改良しカオス混合による効率的な混練でポリマーアロイの製造に世界で初めて成功したのは当方である。
電気粘性流体について、傾斜組成粉体や微粒子分散型粒子などの特殊構造の半導体粒子が高い電気粘性効果を示すことを世界で初めて実証したのは当方で、その耐久問題も解決している。ただ、パーコレーションについては、世界初であるかどうか自信がない。
何故なら、1950年代に数学者が議論をはじめ、それから40年近く経っていたからだ。そして、シミュレーションプログラムについて論文を書こうと調査したところ、調査の2か月前に学会誌「炭素」に類似のシミュレーションについて論文が投稿されていた。
すなわち、日本化学会で混合則でまだその現象を議論していた時代に、炭素学会でパーコレーションが議論されていた可能性が高い。スタウファーによる浸透理論の教科書が登場したのは1980年代で、当方が初めて指導社員から説明を受けたのは1979年である。
指導社員は、混合則を説明しながら本当はパーコレーションで説明するのが好ましいが、材料屋は信じていない、とぼやいていた。おそらくアカデミックな研究所でパーコレーションが議論された可能性があり指導社員はその議論で周囲から叩かれた可能性が高い。
その後無機材研へ留学する直前にゴムへカーボンを分散し半導体ロールを開発企画していた主任研究員が当方に物性バラツキについて相談してきた。その時にパーコレーションの説明をしたら鼻で笑われた。
ちょうどCの勉強を始めた頃で、Cを用いてシミュレーションプログラムを作ってみようと考えていた頃である。1990年前後まで材料屋には混合則が一般的であったことは確かである。パーコレーションの概念が材料屋にどのように浸透していったのか定かではない。
パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門PRセミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 学会講習会情報 電気/電子材料 高分子
pagetop
高分子材料にしてもセラミックスや金属材料にしてもそれを形にして利用するときには、どこかの段階で配合設計技術が必要になる。
道具だけでなく料理も配合設計が必要になってくるが、料理の配合設計と道具の配合設計との違いは、味見を舌でするかどうかという大きな違いがある。
刀鍛冶が出てくる番組で、刀鍛冶が刀をなめながら研いでいたシーンを見たことがあるが、これは例外として、一般に道具の配合設計では道具の機能について評価しながら最適化を行ってゆく。
材料設計に携わる人は、化学系の学問を修めた人が多いが、この評価をする行為に着目すると物理や数学のスキルも要求されるのが配合設計技術である。
化学系の人は物理や数学が不得意であることに大学へ入学して驚いた。理系を志すにあたり物理や数学が不得意だから化学を目指した、という友人もいた。
しかし、配合設計技術では化学同様に物理や数学のスキルが重要である。最近ではマテリアルインフォマティクスも取り入れなければいけないので情報工学のスキルも要求されるようになった。
もっとも、当方が学生時代に情報工学などという学問は無かった。情報工学を理系の文学部と表現している人がいるが、このような感覚では情報工学は進歩しない。
確かに文学部的ではあるが、科学のあらゆる分野に精通していることが要求される学問である。すなわち、化学や物理学、数学について配合設計ができるぐらいの知識があってはじめてマテリアルインフォマティクスの研究ができる。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
例えばヘキサフェノキシホスファゼンのような疎水性物質を水に分散したい場合にどうしたらよいか。昔からこのような場合にはオイル分散技術が使用されてきた。
オイル分散技術とは疎水性物質をオイルに溶解し、その状態でコロイドとする技術である。必要に応じてオイルをオートクレーブ中で取り除くのだが、100%取り除くことはできない。
ゆえに環境問題について厳しくなった時代に、このオイル分散技術では、残った微量のオイルの処理が問題となる。疎水性の高分子もこの方法でコロイドを製造することができるので便利な技術であるが、今の時代に合ったオイルを用いない技術が求められている。
分子の一部に親水基を持っていると、低分子でも高分子でも何とかO/W型コロイドにできるが、全く親水基を持たない物質の場合には、これまで技術手段は無かったが、5年前皮革の難燃化技術開発でホスファゼンの水分散コロイドが必要になり技術開発した。
この技術を用いると、水系コーティング液の開発も可能となる。また、皮革の難燃化技術開発で気がついたのだが、疎水性繊維の内部に物質輸送する技術の開発も可能となる。
カテゴリー : 一般 電気/電子材料 高分子
pagetop