高分子には様々な添加剤が添加され、コンパウンドとして提供されている。透明性が要求される光学用レンズ材料でさえも数種類の添加剤が入っている。
この添加剤の中には、目的が不明の場合もあることをご存知か。ゴム配合技術を新入社員の時に習ったが衝撃的なことを教えられた。何故添加しているのか不明の添加剤があるというのだ。
その添加材を入れなくても物性変化はないが、耐久寿命が変わるので、寿命に効いている、と言われているが、そのメカニズムが不明という。
ただし、その添加材を抜くと寿命試験で短くなる結果が得られるという。当方は不思議に思い、一度その添加材を抜いてみたところ、物性も耐久性も何も影響が出なかった。
しかし指導社員からコストダウンの目的でもない限り、抜かない方が良い、と言われた。理由は、現場でも知られており、その添加材が添加されていない配合は信頼度が低くなるかららしい。
同じような問題が写真会社に転職した時に発生した。エポキシ基を持った添加剤である。接着剤によく使われる分子構造であるが、発がん性のある化合物が多い。
これを廃止する企画をしたが、最初はゴム会社と同様の理由で没になった。そこで、多層塗布における接着について基礎研究を進め、各層の弾性率と応力分布の関係等基礎的事項について研究成果を積み重ね、この化合物が無くても十分な接着力を出せる手法を開発した。
その結果、この添加剤を抜くことができたのだが、これは、科学的に証明できたので周囲の理解が得られたのだが、大変な作業であった。
カテゴリー : 高分子
pagetop
ある日突然高分子製品が壊れた経験は無いだろうか。例えば樹脂製のフックが壊れたり、パンツのゴム紐が伸びきった状態になっていたりする故障はクリープが関係している。
金属やセラミックスのクリープの多くは拡散クリープとして説明され、その寿命予測も実験室結果をうまく再現できる設計が可能だが、高分子のクリープ問題は悩ましい。
何故なら、科学で解明できていないからである。ただし、現象の幾つかは再現よく現れ、技術として問題を解くことが可能で、その解に沿って品質管理を行えば、品質問題を回避できる。
すなわち、トランスサイエンスとして扱う知識があれば、製品設計が可能と言える。もちろんこの時はロバスト設計が基本となり、タグチメソッドを使用する。
ゆえに高分子の破壊問題では、タグチメソッドが不可欠であるが、タグチメソッドをご存知ない方はお問い合わせください。Pythonのプログラム付でご指導するので、すぐに実験で活用できます。
タグチメソッドのセミナーにつきましては、「Pythonで学ぶタグチメソッド」をお勧めします。セミナーは1人でも開講いたしますのでお問い合わせください。複数受講の場合にはサービス価格でご提供いたします。
カテゴリー : 一般 高分子
pagetop
高分子の難燃化技術は、トランスサイエンスの分野である。そもそも火災という現象そのものがトランスサイエンスである。燃焼をいくら管理して実験を行っても、それが非平衡で酸化が進行しているならばトランスサイエンスの現象であることを悟るべきだ。
未だ非平衡の現象を科学で解析できていない。そこを理解できていると、無重力状態における燃焼現象が地上と異なることに驚く必要はない。地上と異なるのは「当たり前」である。
地上では、自己消火性となる酸素濃度で可燃性の高分子を無重力状態で燃焼させると燃え続けたのでびっくりした、ということがニュースで報じられた。当方ならば驚かない。
宇宙での火災、とりわけ宇宙船の中の火災は人命にかかわるので重要な研究とばかりに、科学の研究を始めた学者がいるそうだが、センスが悪い。
もっとも、世間は高分子の難燃化技術について未だ正しい理解をしている人が少ないので、いかがわしいサイエンスショーでも「科学」と持ち上げるように、哀れみではなく称賛として見られるのだろう。
科学者と称する人は、自分が正しいと思い込んでいる人が多いように思う。科学的手順で答えを出せばそれは皆が科学として認めてくれる。
仮に無駄な答えでも無知な人から見れば宝物のように見えるのだろう。無駄な知識になっているだけなら良いが、時々間違った問題で正しい答えを出している場合もあるので困る。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
当方は運の良い時に学生時代を過ごした。ちょうど耐熱性高分子の研究に限界が明らかとなり、難燃化手法へ研究者の関心が移ってきたころである。
当時東北大学村上研で輪講に使用していた本を出版することになって、当方をご指導してくださった先生に献本があった。おそらく高分子難燃化技術では、その本が体系だった最初の教科書だろう。
それより以前でも日本で高分子の難燃化技術に関する本が2冊出版されていて、いずれも大した内容の本ではない。今ならば著者には悪いがゴミである。村上研が翻訳された教科書は、この2冊とは月と鼈の差がある内容だった。
だからアカデミアで翻訳しようという気になられたと推測している。当時PVAの難燃化研究を3か月ほど行い、論文を1報書いているが、この本を参考にしている。
PVAは、難燃化が難しい高分子と書かれていたので、難燃剤の添加量について実験条件を大きく変動させている。意外にも10%程度のホスフォリルトリアミドのホルマリン付加体で自己消火性サンプルが得られびっくりした。10%では難しいと思っていたのでそれより少ない添加量を検討していない。
当時の経験も含め、高分子の難燃化技術開発に50年近く携わっていると、世間の誤解の多さにびっくりする。高分子の難燃化技術の難しさだと思う。
当時の教科書では、リン系の難燃剤では難燃化できる高分子が限られるようなことが書かれていたが、LOIを21以上にする条件を基準にすれば、すべての高分子をリン系の難燃剤で難燃化できる、と経験知として持っている。難燃化技術でお困りの方はご相談ください。
カテゴリー : 一般 高分子
pagetop
高分子の難燃化技術はどこまで進んだのか。科学の視点では、どのような高分子でもLOIを21以上にする技術が存在する。すなわち、どのような高分子でも空気中で自己消火性を持たせることが可能となった。
ただし、用途に応じて難燃化規格が存在するので、それぞれの規格に合うように最適化しなければ難燃材料として社会へ提供できない。
LOIだけが難燃化規格となっている場合には、現在の難燃化技術ですべての高分子をその用途で用いることが可能である。
環境への負荷を考慮すると、非ハロゲン系難燃化技術を用いるのが好ましいが、このような話になってくると、幾つか誤解が存在するので説明がややこしくなる。
まず、ハロゲン系難燃剤の問題を述べると、三酸化アンチモンとの併用で最も効果を発揮するようになる。臭素系難燃剤であれば、単独使用で空気中において自己消火性とすることが可能である。
しかし、臭素系の難燃剤は、使用禁止物質に指定されている化合物が存在する。そしてそれが30年前より増えてきており、現在使用可能なものは少なくなった。恐らく将来使えるものが無くなる可能性も出てきた。
すると困るのは、2022年の法律との関係である。Renewableが基本となっているこの法律に従い、リサイクルするときに、臭素系難燃剤が含まれるとリサイクルできなくなる。
現在でもリサイクルするときに再生材の中に臭素が含まれているかどうかのチェックが行われており、臭素が含まれていると再生材から取り除かれる。
ゆえに、高分子を難燃化するときには今の時代であれば、非ハロゲン系難燃剤で高分子を難燃化すべきという結論が出てくる。それでは、非ハロゲン系難燃剤ですべての高分子を難燃化できるのかと言えば、残念ながら科学ではyesという結論を出せない状態である。
しかし、技術的には可能である。このような表現を不思議に感じた方は弊社にお問い合わせください。当方は50年近く前に難燃化が難しいとされたPVAをリン系化合物だけでLOIを21以上にすることに成功している。論文発表もしている。
カテゴリー : 一般 高分子
pagetop
樹脂の難燃化で難しいのは、難燃剤の分散に高分子の高次構造が影響する点である。PCのように非晶性高分子と言われている材料では、問題がなさそうに思えるが、PPやPEは難燃化が難しい、と言われている。
1970年代から難燃剤の開発が盛んになったが、半世紀経過しても同様の相談がある。高価な難燃化技術の書籍には、答えが書いてあるが、その答えの理解が難しいようである。
すなわち、書籍に書かれた事例と実際に扱っている材料で現象が異なるという疑心暗鬼が理解を難しくする。当方は30年ほど前からその答えを書いてきたが、その答えさえ疑う人がいる。
分散技術の因子と難燃性能との関係が理解されていないためであるが、この関係を説明するのは難しい。しかし、ある程度のことはわかってきて、またその理解を実証するデータを当方は持っている。
困るのは、このデータさえも否定してくる人である。これは議論が難しい。なぜなら、科学的データではないからである。あくまでも当方の経験知を活用し、出した実験結果である。
本来は、高分子の高次構造と難燃剤の分散状態との関係を科学的に明らかにして、その結果を利用し、難燃剤の機能の発現に関して研究を進めるのが科学的であるが、これが結構面倒である。
カテゴリー : 一般 高分子
pagetop
材料のプロセシングを誤解している人は多い。セラミックスでは粉体の混合から始まる。ゆえに粒子の大きさなど問題になりそうな因子が直感的に分かり、半世紀近く前のセラミックスフィーバーではゾルゲル法が盛んに研究された。
これが高分子材料になると、溶融状態で処理する場合が多いので、均一に混合されると誤解する。また、ラテックスの混合から製造された薄膜では、ラテックス粒子の大きさのまま薄膜のドメインが形成されていることを知らない人がいる。
2000年に行われた国研「高分子精密制御技術」では、混練が取り上げられ、ウトラッキーの伸長流動装置が検討されている。
これは、剪断流動で混練しようとする2種の高分子の粘度差が大きいと分散粒径が大きくなり、混練が進まないという結果が得られていたからである。
これを確認するために高速剪断混練機が試作され、1000回転以上の回転数でナノオーダーの高次構造を可能とする混練プロセスが実証されたが、スケールアップが不可能と言われた。
ちなみに、大型の混練機ではだいたい500回転前後が最大で、300kg/h以下の処理量の混練機で800回転が限界の様である。
そのため、粘度差があってもナノオーダーの分散が可能になるということで伸長流動装置が検討された。しかし、この装置も高速剪断混練機同様にスケールアップに限界があることがわかった。
セラミックスにしろ高分子にしろ、何らかの機能を持った成形体を作ろうとするとその材料の混合プロセスが問題となる。このプロセスについて未だ分かっていない事が多いために、コンパウンディングよりも成形プロセスに注力したりする。
カテゴリー : 一般 高分子
pagetop
水へ塩を溶解するような感覚で砂糖を溶かしていては、おいしいアイスコーヒーを飲めない。インスタントコーヒーの粉末が溶けにくいからである。
砂糖とコーヒー、少しのお湯無ければ水で最初によくかき混ぜて、滑らかなペースト状にする。まったく凝集物が無くなってから、攪拌しながら所定の冷水を入れると、おいしいアイスコーヒーが完成する。
必要に応じて、ミルクと氷を入れる。アイスコーヒー1杯飲むのにも攪拌プロセスは大変である。やはりアイスコーヒーは、氷が入ったコップに、コーヒーを抽出しながらいれて、ブラックで飲むのが一番おいしい。
塩と砂糖で分散の手間が異なるように、高分子へ低分子と高分子、あるいは微粒子を分散する時にもそれぞれ手間は異なるが、意外と無頓着な人が多い。
タイヤ用のゴムのコンパウンドは、射出成形体用コンパウンドに比較するとアイスコーヒーを作る手間以上の差があるプロセスで生産されていることを知らない人は多い。
射出成型体のほとんどは、適当なアイスコーヒーの作り方に近くてもそこそこのものができてしまうが、タイヤ用のゴムでは加硫むらが起きるなど様々なトラブルが発生するので混練プロセスの品質管理は厳しい。
カテゴリー : 一般 高分子
pagetop
高分子の高次構造は、今でも難解な対象である。例えば自由体積部分を観察しようとしても苦労する。その量について、DSCで測定されたTg部分のエンタルピーと相関すると言われている。
それではこの部分と成形体密度とが相関するのか、というと、球晶が内部に生成しているときには、球晶の量の影響を密度も受けるはずなので単純ではない。
球晶の量は、X線小角散乱で計測し、それで量を確認できないかなどと一苦労する。ポリマーアロイや低分子の添加剤を添加するとさらに話は複雑になってくる。
相溶は球晶部分で見つかっていないので、ポリマーアロイの少ない成分のポリマーや低分子添加剤の分散は、非晶質部分で起きていると思われるが、非晶質部分には、自由体積部分も存在するのでその分散状態の考察は難しくなる。
ブリードアウトがマトリックスへの溶解度で決まる、と説明されても、それを信じていると市場で品質問題を引き起こすことになる。その溶解度をどのように見積もったらよいのかという難しい問題があるからだ。
難燃剤の効果も高次構造の影響を受ける。ハロゲン系難燃剤は多少その影響の効果は表れにくいが、リン系難燃剤では、分散が悪いと適切な量が添加されていても、残ジンが起きる。ひどい場合には、見かけ、効果が現れなくなる場合も存在する。
カテゴリー : 一般 高分子
pagetop
一次構造があたかもフェノールとメチレンとの重合が進行して生成したような構造をしているフェノール樹脂だが、触媒存在下フェノールとホルマリンとの付加反応で生成したモノマーを含むオリゴマー前駆体のメチロール基が反応し、縮重合して合成される。
ここで、フェノールとホルマリンとの反応は、触媒と反応温度等で制御されるのだが、フェノールのホルマリン付加体が1種類ではなく、多種類の混合物となる。
酸触媒が用いられた場合は、ノボラック樹脂となり、レゾール樹脂はアルカリ触媒で合成されるが、それぞれのフェノール樹脂前駆体の構造を合成時の反応で1種類に制御することは困難である。
すなわち、ノボラック樹脂もレゾール樹脂も、その硬化後の高次構造の正確な情報を前駆体から得ることが難しく、その結果物性制御は、プロセスと原料管理で行うことになる。
難燃性について品質管理活動により、LOI値の偏差で1以内に追い込むことは可能だが、一般の樹脂は、0.5以内で管理できることを考慮するとこの偏差は大きいと言える。
問題は、フェノール樹脂前駆体のスペックをどうするかであるが、これはフェノール樹脂メーカーのノウハウに依存することになり、40年近く前はそのメーカー間の力量に大きな差があった。
あるメーカーAとゴム会社は契約を結び、高防火性天井材の開発を行ったのだが、M社の難燃剤が添加されていないフェノール樹脂発泡体の防火性能と同等の発泡体を得ることができなかった。
リバースエンジニアリングにより、前駆体の品質制御が重要ということを理解できたが、A社にはそのような制御技術が無く、それゆえ難燃剤を添加して防火性能を補わなければいけなかった。
M社のフェノール樹脂は、ソフトセグメントがほとんどないのだが、A社のレゾール樹脂を使用してフェノール樹脂発泡体を合成するとソフトセグメントが5%以上必ず生成した。
このソフトセグメントの量が防火性能に影響していると推定されたのだが、レゾール樹脂を硬化させる反応をいろいろ検討してもM社のように5%以下とすることができなかった。
すなわち、レゾール樹脂合成条件まで踏み込んで研究しなければ高防火性天井材開発を難燃剤無添加で開発することは難しかった。
カテゴリー : 一般 電気/電子材料 高分子
pagetop