活動報告

新着記事

カテゴリー

キーワード検索

2016.07/12 耐熱可塑剤

PPSやPPEなどのエンプラを混練する時に困るのは、混練温度が高いことである。すなわち混練温度が高いことから、これらの樹脂と組み合わせる添加剤に耐熱性という制約が付く。
 
PPSと6ナイロンの配合についてカオス混合を行うときに、PPSの混練温度は低く設定している。どの程度に、というのはノウハウの範囲だが、この技術が高分子学会技術賞に推薦されたとき、説明に困った質問があった。
 
ナイロンが分解して低分子量になり、相容したのだろう、という審査官の決めつけによる質問である。混練温度は低いので分解は起きていない、と回答したら、それではPPSが溶解しないだろう、と質問が返された。
 
低い温度で混練が進行する特殊な技術だと説明したが理解して頂けなかった。サラリーマン最後のチャンスで技術賞を取り損ねたが、残念と言うよりも科学的な現象以外信じて頂けないという状態に頭を抱えた。
 
20世紀は科学が技術を牽引した時代だが、21世紀は技術が非科学的な現象をどんどん実用化し、科学を牽引しなければ、イノベーションは生じない。特に高分子分野は科学的に正しいと信じられている内容にも怪しい部分が存在する学問である。
 
セラミックスも同様で、かつて焼結理論に関して大激論があった。高分子分野にもこの時のような議論がされても良い理論が幾つかあるが、日本の高分子研究者は優しい人ばかりだ。
 
さて、PPSと6ナイロンの相溶は、それを達成しなければ開発が失敗し、その責任を取らされる立場で実現している。退職前だったのでそのような役割が回ってきたのだが、すなおに失敗するのは悔しいからカオス混合を考案した。
 
しかし、その時耐熱可塑材のアイデアも同時に誕生した。PPSに6ナイロンを相溶するとそれぞれのTgが一つとなり、両者のTgの中間に現れる。PPSにとってはTgが下がることになる。その結果、PPSのTgを基準にした耐熱性は低下する。
 
耐熱可塑剤のアイデアは、エンプラの耐熱性を落とさずに混練時の可塑化効果だけを狙った化合物ができないかというコンセプトであり、可塑剤と呼ぶのは正しくないが、適当な言葉が無い。良い名称は見つかっていないが、ようやくコンセプトを実現出来た。ご興味のある方はお問い合わせください。
    

カテゴリー : 高分子

pagetop

2016.07/08 熱伝導樹脂

一般に高分子材料は導電性や熱伝導性がわるい。ゆえに樹脂の導電性の改良には、カーボンなどの導電性フィラーを添加し、熱伝導性の改良にはダイヤモンドやBNなどの熱伝導性フィラーを添加する。
 
このような高分子材料へフィラーを添加する物性改良方法では、パーコレーション転移が観察される。面白いのは導電性の改良時に現れるパーコレーション転移の挙動と熱伝導性材料で観察される挙動が異なることだ。
 
熱伝導性材料で観察されるパーコレーション転移の挙動は、弾性率の変化で観察されるそれと近い。理由を知りたい方は弊社へ問い合わせていただきたいが、古典的には、複合材料の教科書には、混合則として十把一絡げで説明されている。
 
また、少し手の込んだ方法としてMaxwell-Euckenの理論式やNielsenの理論式が知られている。しかし、高分子材料にフィラーを添加したときには、クラスター生成を確率的に捉えるスタウファーらによるパーコレーションの考え方で、統一的に理解可能である。
 
面白いのは、導電性材料で観察される不安定さでは、パーコレーションという現象を直感的に理解していただけるが、熱伝導や弾性率の問題では、ぴんとこない人が多い。
 
この理由は、例えばフィラーの熱伝導性が大きく変化しているのに、添加量と複合材料の熱伝導率の関係が一つの曲線上にプロットされたり、アスペクト比の効果が導電性ほど顕著に現れなかったりと導電性材料とは少し異なった挙動となるからだ。
 
現象を科学的に正しく理解できないと材料開発を進めることができないので、年に2-3件はこの関連の質問がある。科学的にはフィラーの分散をパーコレーションで説明でき、パーコレーションによる考察が可能となれば、あとは技術で改良するだけである。
 
ただし、科学的な美しいデータが得られないこともある。科学と技術の違いを理解できておれば難しい問題ではないのだが。また、熱伝導性フィラーとしてダイヤモンドが要求される場面は少なく、シリカやアルミナ程度でフィラーとして十分目的を達成できる場合が多い。

カテゴリー : 電気/電子材料 高分子

pagetop

2016.07/07 配合設計(たとえば難燃性樹脂)(16)

配合設計を組み立てる段階では、タグチメソッド以外の統計手法で開発を進めてもよい。例えばドリップ防止に用いられるフッ素樹脂の組み合わせ効果については、一因子実験による分散分析で有意性を示すことができる。
 
また、メラミンイソシアヌレートや硫酸メラミン、リン酸メラミンなどのメラミン系の添加剤にも他の難燃剤との組み合わせについて交互効果が存在する。こうした組み合わせ効果を見つけるには、タグチメソッドを使用するよりも多変量解析や実験計画法で探索した方が効率的である。
 
システムが決まっていない段階で、タグチメソッドは、SN比を求めるための実験数が多くなり探索に時間がかかる。ポリマーアロイの難燃化を検討するときに、評価技術の知識以外に開発手法の特徴を理解して、効率的にロバストの高い技術開発を指向するとよい。
 
複雑な交互効果を用いた事例として、ホスファゼンとリン酸エステル系難燃剤の併用システムを開発した。ホスファゼンとリン酸エステル系難燃剤の組み合わせは公知となっているが、うまく計画を組んで実験すると、このシステムを最適化でき、その交互効果が顕著に表れる場合がある。そしてイントメッセント系の高価なリン酸エステルを用いなくても低コストなシステムを組むことも可能となる。
 
また、PC/ABSのような相分離系ポリマーアロイでは、難燃剤がどの相に分散しやすいのかという問題もある。このような問題では、OCTAを活用でき、シミュレーションでリン酸エステル系難燃剤の分散をある程度予測することが可能である。
 
ちなみにホスファゼンとリン酸エステル系難燃剤の組み合わせシステムについて、シミュレーションで見いだしたリン酸エステルを用いてタグチメソッドによる最適化を行い、すべての樹脂材料がリサイクル材である難燃性PC/ABSの開発に成功した。
 
この時、基本機能にLOIを用いて、信号因子として組み合わせ難燃剤の添加率を3水準、誤差としてLOI評価に用いるサンプルの厚みをとってタグチメソッドを行っている。その結果、ホスファゼンと特定のリン酸エステルとの組み合わせでSN比3dBの改善効果を見いだした。 

カテゴリー : 高分子

pagetop

2016.07/06 配合設計(たとえば難燃性樹脂)(15)

あらかじめ難燃化システムが決まっている場合には、材料評価技術として難燃規格だけを用いてそれに適合するよう開発を進めることも可能である。
 
すでに説明したように、この場合にはタグチメソッドが便利で、基本機能のパラメータとして燃焼時間や燃焼速度、あるいはLOIを利用できる。
 
 例えば電子機器の外装材として需要が伸びているPC系のポリマーアロイでは、UL94-V0規格の燃焼時間を基本機能として採用しタグチメソッドで開発を進めることができる。この時サンプル試験片の厚みや事前のエージング処理などは外側因子として配置し実験する。
 
 ただし、すでに難燃化システムが決まっている場合には、外側因子として難燃剤の添加率を信号因子に採り実験を組んだほうが好ましい。また、この時の基本機能には、難燃剤の添加率に対して線形性が高いLOIを使用した方が良い。
 
故田口先生は、タグチメソッドは「手法」であり難燃化システムや基本機能の選択は技術者の責任である、と言われていたが、システムとして古典的な三酸化アンチモンとハロゲンの組み合わせを採用するのか、ノンハロゲン系を指向してイントメッセント系の難燃剤を使うのか、新たな難燃化システムを組み立てるのか、あるいは基本機能として何を選ぶのかなどは、まさに技術者の責任である。
 
ところで、ポリマーアロイの難燃化システムについては多数の特許が存在しており、特許回避策も技術開発を進める上で重要である。幸いにもPC/ABSでは主要な難燃化手法が公知技術となっている。ゆえに特許回避策として公知技術の組み合わせを選択することが可能である。
 
公知技術の組み合わせでも驚くべき事実が出れば、それは発明となる。

カテゴリー : 高分子

pagetop

2016.07/05 配合設計(たとえば難燃性樹脂)(14)

このシリーズ(13)で行った考察により、燃焼時の熱でガラス(無機高分子)を生成してリンを燃焼している系内に固定化して、その触媒作用によりチャー生成を効果的に促進する難燃化システムを配合設計した。
 
ジエタノールアミンとホウ酸とを反応させて、ホウ酸エステルオリゴマーを合成し、リン酸エステル系難燃剤であるTCPPと組み合わせ軟質ポリウレタン発泡体に配合したところ、驚くべきことにTCPPを用いてもリンの含有率に対するLOI増加率はDAPPと同程度に高くなった。
 
このホウ酸エステルオリゴマーを他のリン酸エステル系難燃剤と組み合わせても同様の効果が得られるのかどうかを40種以上の配合系についてLOI法で調べた。そして実験で得られた多数のデータを多変量解析で処理した。
 
ホウ酸エステルオリゴマーだけを軟質ポリウレタン発泡体に添加しても、LOIの変化はわずかであり難燃効果が認められなかったが、驚くべきことに、ホウ素原子の標準偏回帰係数がリン原子との交互作用の影響で高くなっていた。
  
重回帰式 LOI=2.95×(P含有率)+15.17×(B含有率)+0.14×(Cl含有率)+18.3
標準偏回帰係数 P含有率:0.65  B含有率:0.40  Cl含有率:0.11
重回帰係数   0.84
  
 さらにTGAの測定データでは、600℃における残渣が多くなる傾向が観察され、その残渣を化学分析したところ、ホウ酸エステルオリゴマーとリン酸エステル系難燃剤が反応して生成したと思われるボロンホスフェートが配合量に相当する含有率で確認された。
 
 ホスファゼンを用いた難燃化システムで見出された、燃焼時にリンをその系内に固定するとリンの難燃効果を高めることができる、という経験仮説に基づき、燃焼時の熱で無機高分子を生成しリンを系内に固定化する難燃化システムを考案することができた。

カテゴリー : 高分子

pagetop

2016.07/03 配合設計(たとえば難燃性樹脂)(13)

TGAの測定結果を見ると、測定雰囲気の違い(空気中と窒素中)で熱分解の様子が異なり、600℃における残渣が空気中で測定したときに窒素中よりも増えているというデータが得られている。
 
窒素中の測定では、単なる熱分解過程の情報となるが、空気中で測定した場合には酸化分解の情報も含まれてくる。実際の火災では、空気中における熱分解となるので空気中におけるTGA測定が行われるが、酸欠状態でも燃焼が進行するので、空気中だけでなく窒素中のデータと比較して考察する必要がある。
 
このTGAのデータでは300℃あたりから600℃までの領域で難燃剤の働きにより、チャーを生成しながら熱分解していることを読み取ることができる。また、有機物の分解が終了した600℃の残渣量を比較することにより、難燃剤の働きによるチャー生成の効果を評価できる。この考察のためにLOIと600℃における残渣量との関係をグラフでまとめている。
 
 空気中で計測されたこの結果について考察すると、TCPPではLOIが増加していてもチャーの生成量が変化していない。また、DAPPはFyrol-6と同様にチャー生成量がLOIと相関しているが、Fyrol-6よりもLOIとの相関が高い。この考察から、炭化促進型難燃剤でも2タイプ存在することが示唆される。
 
さらに600℃におけるそれぞれの残渣について化学分析してみると、DAPPでは、配合した量に相当するリンの90%近くが残っている。しかし、Fyrol-6やTCPPでは、同様の分析で大半のリンが揮発していたことが示された。
 
 詳細を省略するが、この難燃剤の揮発と以前説明した煤発生量とは関係があり、煤がポリウレタンから生成された炭化物である点に着目すると、ホスファゼンは燃焼時に煤を発生せず効果的にチャーを形成する機構で炭化促進している。これは高分子の難燃化技術を開発するときに重要なヒントとなる。
 
 以上の評価技術を駆使した考察から、炭化促進型難燃化システムでは、燃焼時にリンが揮発しないように燃焼時の系内に固定するシステムが理想的な難燃剤ではなかろうか、という経験仮説が思い浮かぶ。また、オルソリン酸の沸点が240℃前後にあることや、TGAにおける重量減少速度がこの温度領域で早くなることから、燃焼時にリンを固定化するアイデアは有効と思われる。また、この経験仮説をホスファゼン以外の難燃剤で確認できれば、新たな難燃化システムの開発につながる。

カテゴリー : 高分子

pagetop

2016.07/02 配合設計(たとえば難燃性樹脂)(12)

 DAPPについては、トリレンジイソシアネート(TDI)と反応させてプレポリマーを合成し、マトリックスの主鎖に難燃剤成分を組み込んだ(反応型)システムと粉末の形態で難燃剤をマトリックスに分散した(添加型)システムの両者について検討している。
 
DAPPを添加型とプレポリマーすなわち反応型で添加した処方で両者の違いを観察した。添加型では、反応型と比較してLOIが低くなるという実験結果が出た。
 
これから、難燃剤の分散状態がLOIに影響することがわかる。また、DAPPをプレポリマーの形態で添加した試料で最も難燃効果が高くなっているが、DAPPは他の難燃剤に比較して単位量あたりのリン含有率が高い。
 
リンの含有率で難燃性能を比較したところ、DAPPの難燃効果が他の難燃剤の効果よりもわずかに高くなっている。
 
ただし、LOIが21を越えるあたりから同じ反応型であるFyrol-6との差は無くなっている。ちなみに、Fyrol-6は両末端にTDIと反応する水酸基を持った化合物で反応型難燃剤として機能している。
 
これをTCPPと比較することにより、添加型難燃剤よりも反応型難燃剤の方が効果的に難燃性の機能を発揮している現象を捉えることができる。
 
すなわち、難燃剤は、添加型よりも反応型難燃剤のほうが効率よく機能し、リン酸エステル系難燃剤よりもホスファゼン系難燃剤のほうが高い難燃効果を有している。

カテゴリー : 高分子

pagetop

2016.07/01 配合設計(たとえば難燃性樹脂)(11)

 「高分子の難燃化技術とは」という問題を科学的に考えると、燃えにくくすることや耐熱性をあげることなどいろいろなことを考えなければ行けないが、「着火しても火が消えやすい材料に変性する技術」は一つの解答であり、これは難燃性材料開発方針になる。
 
 高分子材料に着火した火を消えやすくする手法には、着火した時に溶融し、その吸熱反応で火を消す方法(溶融型難燃化システム)と、燃焼時に炭化を促進して燃焼している面にチャーと呼ばれる断熱層の形成を促進する方法(炭化促進型難燃化システム)が知られている。
 
溶融型難燃化システムの事例についてはR-PETを活用した難燃性ポリマーアロイを以前紹介したので、これから炭化促進型難燃化システムについて軟質ポリウレタンフォームを開発事例として難燃化とその評価技術について述べる。
 
 難燃剤としてジアミノテトラフェノキシホスファゼン(DAPP)と反応型リン酸エステル系難燃剤(Fyrol-6)、添加型リン酸エステル系難燃剤(TCPP)の3種を用いてその性能を比較した。

カテゴリー : 高分子

pagetop

2016.06/30 配合設計(たとえば難燃性樹脂)(10)

1983年に米国で開発されたコーンカロリメータ(8)は、実火災に近い現象を再現できるように、評価装置へ固定された試験片の表面に疑似火災環境を作り出し、燃焼の挙動をモニターして材料の難燃性を評価しようという狙いである。そのため、この装置を用いると燃焼現象に関する多くの情報を収集することができる。
 
測定原理は、有機材料の燃焼時における発熱量が酸素消費量1kgあたり13.1MJであるという1917年に発見されたThorton(米国人)の原理を用いている。この原理は実践知であり、厳密な意味で科学的とはいえないが、建築基準法の不燃材料等の評価にこの方法による発熱性試験の項目が含まれている。
 
 コーンカロリメータほど多くの情報が得られない規格でも、燃焼速度や一定の大きさのサンプルの燃焼時間が難燃性の評価基準として採用されているケースは多い。しかし、材料の燃焼速度や火が消えるまでの燃焼時間は、実火災における材料の燃焼において一部の評価尺度にすぎないことはLOIと同様である。
 
燃焼時の材料挙動に関し多数の情報が得られる評価装置だけでなく、煙量だけを簡便に計測できるようにした装置もある。例えば、難燃性ポリウレタンホスファゼンコポリマー発泡体と一般のリン酸エステル系難燃剤を添加したポリウレタン発泡体について燃焼時に発生する煙量を濾紙に付着した煤で比較する装置である。
 
この比較で、ホスファゼン系難燃システムでは大幅に発煙が抑えられていることがわかった。このような燃焼過程の一部分だけを取り出した評価技術は、高分子の難燃化機構を絞りこんで考察する時に便利である。
 
ちなみに、ホスファゼン系難燃剤で煤の発生が少なくなるのは、燃焼時に揮発しないためである。リン酸エステル系難燃剤では、燃焼時の熱で難燃剤が分解し、沸点が240℃のオルソリン酸となり、揮発するため、煤が多くなる。ハロゲンを含めばなお一層煤は多くなる傾向がある。

カテゴリー : 高分子

pagetop

2016.06/28 配合設計(たとえば難燃性樹脂)(9)

高分子材料の難燃化とその評価法について、LOIとUL94-V試験を事例に、難燃性評価試験の概略を説明してきた。ポリマーアロイの用途が決まると、その分野における難燃規格が材料の品質項目の一つとなるので、難燃性ポリマーアロイの技術開発では、用途に応じた材料設計方針が重要となってくる。
 
これは、「難燃規格を通過するための材料開発」を意味しているが、それでは、科学的な香りがせず、いかがわしささえ感じる読者がいるかもしれない。しかし、難燃規格が材料の用途において実火災を考慮し制定されている点に着目すると、これは賢明な考え方である。
 
 30年以上前にJIS難燃2級という建築材料向けの欠陥評価法があった。そして、この評価法に合格するように膨らみ変形する発泡体が台所の断熱天井材用途に開発された。評価装置に取り付けて試験を開始すると、点火された試験炎から逃げるように高分子発泡体が膨れるため着火することはない。その結果、煙も出なければ燃焼による発熱も無く、あたかもセラミックスボードを評価しているようなデータが得られて試験が終わる。
 
 このような材料が市場に出まわった結果、耐火建築でも実火災で簡単に燃えるという事件が発生し社会問題になった。そこで規格の見直しが行われ、実際の天井材に近い大きさの試験片を用いる簡易耐火試験が、プラスチック天井材の建築基準として採用されるにいたった。
 
これは、当方が技術者としてスタートした頃の出来事であり、問題を起こしたJIS難燃2級という規格が科学的に研究されて制定された評価法だったので、難燃性高分子を開発するには、評価「技術」が重要であるという認識を持つようになった。
 
 高分子の難燃性を評価する技術は、いろいろ開発されてきた。紙面の都合でそれらをすべて解説できないが、これら評価技術の細かい知識を習得するよりも、開発のターゲットとしている市場で要求される難燃規格についてその知識を深める努力をした方が実務上役に立つ。
 
 火災で高分子が燃える、という現象では、火源により高分子が熱せられて温度が上昇し、添加物や高分子の分解物がガス化、そしてその酸化が激しくなり、燃焼に至る。この時酸素不足となれば、酸化が終結し火が消える。高分子の構造に二重結合を形成しやすい要因や、脱水素を促進する触媒機能を示す添加剤あるいはラジカル補足剤が存在すれば高分子は炭化する。ここで生成する炭化物はチャーと呼ばれ、燃焼している面で発泡したチャーが形成されると、それが耐熱断熱層になり燃焼が停止する。
 
 この燃焼の各段階すべてを同時に評価できる技術の開発は大変難しい。ゆえにすでに提案されている難燃規格は、燃焼の一部のプロセスについて製品の用いられる環境で発生する現象を考察し制定されている。

カテゴリー : 高分子

pagetop