活動報告

新着記事

カテゴリー

キーワード検索

2015.11/04 PPSと6ナイロンの相溶

ポリマーアロイを設計するときに重要な理論としてフローリー・ハギンズ理論がある。この形式知では、χパラメーターが定義されているが、その実体は自由エネルギーである。だからこのパラメーターが正の時に高分子は相溶しない、というのは容易に納得できる。
 
しかし、これは平衡状態における話だ。非平衡状態ではこの限りではない。当方の実践知によればしかるべき条件が揃ったときに、コンパチビライザイーが無くても二種の高分子の組で相溶が生じる。
 
この実践知を獲得したのは新入社員の時だ。二種類のゴムをロールに巻き付け混練すると、相溶しないので全体は白っぽくなる。形式知に合致した現象が起きているのだが、ある日、それが透明になる瞬間を発見したのだ。どのようなゴムの組み合わせでも透明になるこの不思議な現象は、カオス混合装置を考えるヒントになった。
 
最初にその現象を発見したときには、目を疑った。その後頭を疑った。そして学生時代には理解しにくかったフローリー・ハギンズ理論をすっきりと整理できたのでびっくりした。形式知と実践知をうまく組み合わせて考えることができるようになったのだ。教科書では曖昧な説明がなされているχパラメーターの問題について、その曖昧の中身が見えた瞬間である。指導社員は当方を熟練者の仲間入り、と褒めてくれた。
 
STAP細胞の騒動では未熟な研究者が話題になった。あの事件では、彼女の年齢と一時期でも学位を授与されたキャリアから彼女自身の責任は大きいが、もっと責任が大きいのはこのような研究者を生み出している大学である。自動車ならばリコールすべき事態である。リコールとは修復して社会に戻す作業を言う。スクラップにするのは損失が大きいので、リコールで修復するのである。リコールして修復しないのは、社会的責任が欠如していると言っても良い状態だ。
 
話が脱線したが、STAP問題の原因の一つに形式知と実践知、暗黙知という知識の特性をよく理解していない「無知」の問題があった。そして倫理感も含め、科学者として未熟という言葉が使われた。「PPSと6ナイロンを相溶させる技術」では、もし当方が無知な状態であれば、実用化できなかった。この技術開発では、周囲の理解と期限内にプラント建設の資金を得る必要があった。そのため形式知と実践知を迅速に周囲と共有化する必要があり、未熟な状態ではゴールにたどり着けなかった。
 
すなわち形式知と実践知を周囲に理解させる手段や方法は大きく異なり、前者は科学的論理で正しく行えば良いので容易だが、後者はそれだけではダメで納得を得るための細心の配慮が必要なのである。前者は、仮に理論だけであってもそれが真理の積み重ねであれば周囲の支持が得られやすい。そして、新たな仮説を確認するための実験を行うチャンスもできる。ところが、後者では、実体が経済性も含め再現よくできることが厳しく求められ、繰り返し再現性が否定された時点で、議論は終わりとなる。
 

カテゴリー : 一般 高分子

pagetop

2015.10/28 微粒子の分散

高分子へ微粒子を分散するには技術が必要である。特に超微粒子になるとその必要な技術レベルは格段に高くなる。例えば、混練プロセスで分散するときには、その濃度が高くなるにつれ、指数関数的に難しくなる。
 
微粒子の分散を促すためにその表面処理を行うアイデアは古くから検討されてきた。その結果、各種カップリング剤が市販されている。しかし、微粒子の表面処理に成功しても、20vol%を過ぎたあたりからクラスターを作りやすくなる。
 
ゆえに20vol%以上添加する場合には、プロセシングによる分散制御技術が重要になってくる。これをカップリング剤あるいは何らかの界面活性剤等の技術だけで行おうとするとうまくゆかないケースが多い。
 
高分子へ微粒子を分散するときに、ラテックスを使用するのはよいアイデアだが、コストが高くなる問題がある。しかし、設計した部材によってはコストよりも性能を重視する必要からラテックスを使用するケースもある。
 
この場合、コロイド科学の知識があれば混練よりも技術的難易度は少し下がる。さらに実践知もあれば、50vol%程度までクラスターの生成を抑えた分散に成功できる可能性が出てくる。
 
いずれにしても微粒子を高分子に分散しようとするときには、科学の形式知だけでは難易度は高く、開発を始める前に予備実験を行い実践知を蓄える必要がある。微粒子の濃度やその他の状態によっては、開発不可能な場合や実践知と暗黙知によるトリッキーなアイデアで簡単に成功してしまう場合などさまざまである。
   

カテゴリー : 一般 高分子

pagetop

2015.10/24 高分子の難燃化技術(4)

高分子の難燃化技術で最も難しい点は、生産技術によりその性能が左右される場合があるところだ。実験室で技術開発に成功しても量産過程でそれが再現しない、ということがある。タグチメソッドを用いても、制御因子や誤差因子がうまく選ばれなければ、痛い目にあう。
 
特にフィラーを添加していると、ローソク現象も加わり、現場で手直しが難しい場合がある。難燃化技術開発になれてくると、量産時に備えた実験計画を立てることができるようになる。しかし、それでも量産設備の制約から研究時の性能を再現できず、あわてることになる。
 
樹脂の製造に用いられる二軸混練機は、L/Dやそれに対応したスクリューセグメントの組み方が重要になってくるが、現場で使用されている二軸混練機の大半は、L/Dが50以下である。これが50以上あっても恐らく満足な結果は得られないかもしれないが、50以上になってくると樹脂によっては、プロセスによるダメージを心配しなくてはいけない場合も出てくる。
 
すなわち、高分子の難燃化技術では、難燃剤の分散をどのように均一にあるいは不均一に行うのかが重要である。不均一の制御は難しいが、均一ならば二軸混練機の吐出口にカオス混合装置を取り付けると実現できる。
 
以前面白い体験をしたが、UL94-V2合格品の市販PC/ABSをカオス混合装置で処理したところ性能が上がりV0になったのでびっくりした。難燃剤を分析したところリン酸エステル系の化合物が検出されて納得ができた。
 
30年以上前、軟質ポリウレタンフォームで実験をした時の経験知があり、現象の理解は容易だった。しかし、分散状態で難燃性能が大きく変わるという現象は、分散状態の数値化が難しいこともあり、科学的にうまく実証されていない。
 
 

カテゴリー : 高分子

pagetop

2015.10/22 高分子の難燃化技術(3)

ホスファゼンおよびその多数の誘導体は高分子の難燃剤として1960年代から期待されていた。しかし、その事業化に成功したのは1970年代に入ってからで、今はブリヂストンの子会社となったファイアーストーン社から販売された耐熱ゴムが最初の商品で、宇宙船ジェミニに採用された。
 
その後世界で事業化に乗り出す企業が多数現れ、1980年代には10000円/kgの商品も現れた。修士論文も提出し、就職まで1ケ月近く暇だったので、ホスファゼン誘導体を数種類、また当時としては世界で初めての環鎖状型高分子を1種類合成して論文とショートコミュニケーションを書いた。
 
ご褒美として、自分で昇華精製したホスファゼンを1000g試験管に封管して頂いた。これが一年後ゴム会社で役立った。軟質ポリウレタン難燃化技術の企画事例としてホスファゼン変性ポリウレタン発泡体を開発できたのだ。以前この活動報告で始末書騒ぎになった顛末を書いた。
 
紆余曲折はあったが、この開発成果は高分子学会でも報告でき論文としてまとめることができた。まだ、企業の研究所は、そのような時代だった。その後この技術は、電気粘性流体のオイルやリチウムイオン電池の電解質用難燃剤としてゴム会社で発展するが、とにかく高価だった。
 
昔は日本で10社以上、世界で4社(?)程度ホスファゼンの事業に名乗りを上げていたが、今は日本で3社、世界で2社程度になった。事業を行っている会社は少なくなったが、難燃剤としての魅力は衰えていない。未だに特許でさまざまな技術が公開されている。
 
ホスファゼンを難燃剤として用いたときに現れる魅力は、リン酸エステル系難燃剤と比較にならない。ただ、化合物としていわゆる”ホスファゼンオタク”にしかわからない姿もあるので、関心のある方は弊社にお尋ねください。日本では大塚化学が30年以上前から頑張って事業を続けており、供給の問題も解決し価格も下がり、利用しやすくなった。
   

カテゴリー : 高分子

pagetop

2015.10/20 高分子の難燃化技術(2)

PPSやザイロンなど特殊なエンジニアリングプラスチック以外の大半の有機高分子は可燃性である。例えばPETやPBTなどのポリエステルはLOIは19前後なので空気中でよく燃える。多くのポリエーテル系軟質ポリウレタンはLOIが18.5程度で、ポリエステルよりもよく燃える。そしてこれらの材料は比較的難燃化しにくい高分子でもある。
 
高分子の難燃剤として、一種類だけ用いて効果があるのは、ハロゲン系化合物とリン系化合物だけである。しかし、この一種類で難燃化できる高分子は限られ、大半の高分子は、これらの化合物と他の化合物を組み合わせて難燃化しなければならない。
 
例えば、ハロゲン系化合物と三酸化アンチモンの組み合わせは有名で、特に臭素系化合物と三酸化アンチモンの組み合わせは最強であり、どのような高分子でも難燃化できてしまう。1990年代には大変多くの臭素系化合物が開発された。しかし、21世紀になり環境問題が騒がれるようになると、ノンハロゲン系難燃剤が技術のトレンドになってきた。
 
特に樹脂のリサイクルを考えると、熱分解しにくい難燃化システムが求められる。そこで新たな難燃化システムの開発競争が盛んになってきたが、その技術の中心はリン系化合物を中心とした組み合わせ技術である。
 
リン系化合物と他の化合物との組み合わせシステムについて、30年以上前に当方は燃焼時の熱でガラスを生成するシステムを開発し、ポリウレタンに実装して難燃性ポリウレタンの開発に成功した。この成功後高分子の難燃化をさらに研究したかったが、高純度SiCの事業化へテーマが変わったので中断していた。
 
カオス混合技術は指導社員から頂いた宿題であったが、この高分子難燃化技術は自ら生み出した宿題で、その宿題を完成できる機会を待っていたら、昨年から立て続けに高分子の難燃化技術の相談を受け、リン系化合物を中心とした組み合わせ技術について一つの解答が得られた。
     

カテゴリー : 高分子

pagetop

2015.10/19 高分子の難燃化技術(1)

高分子の難燃化技術は、科学として扱いにくい分野である。なぜなら、火災という現象が単純ではないからである。自然現象は複雑だから、それをモデル化して扱うのが科学であり、何を言っているのか、という批判が出てきそうだが、そのモデル化が難しいのである。
 
例えば燃焼は急激に進行する酸化反応である、と教科書には書かれている。単純に急激に進行する酸化反応をモデル化し、燃焼のしやすさを数値化したのが極限酸素指数法(LOI)で、1960年代にその原理は登場している。JIS化は1980年に入ってからである。しかし、このLOIは高分子の燃焼のしやすさの指標として一応使用可能だが、実火災を前提としたときには役に立たないケースが多い。
 
ちなみにLOIとは、試料が燃焼を続けるために必要な酸素濃度を指数化したもので、空気をLOIで表現すると21となる。ゆえにLOIが21を越える高分子は、空気中で燃焼を続けることができない(自己消火性を有するという)、と言いたいのだが、「いつでも」成立する真理ではない。雰囲気温度やサンプル温度も室温という条件の時成立(注)するだけである。
 
すなわち、小さなサンプルでLOIが21と計測されても、空気中で同じ材料の大きな物体に大きな火源で火をつければ、ばんばん燃える。LOIは、決められたサンプルの大きさと火源、管理された測定雰囲気だけで成り立つ指標である。だから、例えば電気製品の通常使用の状態における難燃性の指標には不適である。こちらにはUL94-V試験というのが適している。
 
以前新幹線で自殺者が原因で初めての火災があったが、鉄道用の難燃試験では、あのような状況を想定していなかったので、車内は丸焦げ状態になった。飛行機では航空機用の厳しい試験法があり、あのような事件が起きても、シートが燃えないので火を消すことが可能となる。そもそも大量の可燃性液体を飛行機内に持ち込めないので類似事件の心配はないが、飛行機のシートと鉄道車両のシートでは難燃基準が異なるので、飛行機で同じ状況になっても火を消すことが可能となる。
 
LOIに関して、その測定値については多くの燃焼試験の中で比較的科学的に得られ繰り返し再現性も高い。また、その測定値の考察において他の科学的な分析データと同様に扱え科学的論文を書くには便利な試験法である。しかし実火災に適用する場合には、それぞれの業界が作成した燃焼試験法が使用される。
 
(注)サンプルに着火して燃焼すると、サンプルも雰囲気も温度が上がる。ゆえに、LOIの測定では常にフレッシュな酸素と窒素の混合気体を流しながら行い、雰囲気温度を上げないようにしている。しかし、それでも測定時に注意をしないと、雰囲気温度が高くなる。あらかじめ、ローソクの炎よりも小さくちょろちょろと燃え続ける条件を求めてから、酸素濃度を0.5さげてやる(酸素が少なくなる)と着火してもすぐに火が消えるか、着火しなくなる。その後、酸素濃度を0.2上げてやると同様の現象となるか、あるいは、ちょろちょろと燃え続けるようになる。次に再度0.1下げて、火が消えるかどうか確認してLOIを決定する。結構面倒な測定方法で、フィラーが入ってくるとサンプルのばらつきも加わり難しくなる。
    

カテゴリー : 電気/電子材料 高分子

pagetop

2015.10/15 微粒子の表面処理

高分子へ微粒子の分散を向上するためにカップリング剤による微粒子の表面処理は常套手段として行われている。また、カップリング剤の一部については、その反応機構や微粒子表面の反応速度について研究されている。しかし、注意しなければいけないのは、研究報告の内容が技術へそのまま展開できないときがあることだ。
 
すなわちカップリング剤が微粒子表面で反応している、と信じて混練機で微粒子の分散を試みても、うまく微粒子の凝集が改善されない、とか、耐久評価試験をしたときにカップリング剤がブリードアウトしたりする場合がある。
 
また、カップリング剤による微粒子の分散処理方法は、ノウハウになっており、特許に書かれた材料の組み合わせや手順を行ってもうまく再現しない場合もある。特許が間違っているのか、というとそうではなく、手順の一部がノウハウとして隠してあるのだ。
 
それでもカップリング剤による微粒子表面処理技術のリバースエンジニアリングは比較的易しく、試行錯誤で実験を進めてゆけば、そのうちにノウハウが見えてくる。ところが高分子の吸着による微粒子の表面処理技術は、カップリング剤のリバースエンジニアリングよりも難しい。
 
そもそも高分子を微粒子に吸着させて表面処理を行う方法など教科書に書かれていない場合が多い。当方は、その手の教科書の執筆を依頼されると、シリカを凝集しないようにゼラチンに分散した技術を例に、高分子吸着による微粒子の表面処理技術について書くようにしているが、どのように見いだしたか、あるいはどのように評価を進めたかについては詳しく書いていない。
 
それは、微粒子に高分子を吸着させる表面処理技術は、ノウハウの塊であり、実用的な技術は科学で説明がつかないからだ。科学では説明が難しいが、技術はできており、できあがった材料について高分子学会などに報告している。
 
高分子吸着による微粒子表面処理の一番の利点は、高分子を用いているので、吸着していない処理剤がブリードアウトしにくい点である。カップリング剤による場合には、カップリング剤が低分子オリゴマー程度までの大きさしかないので、微粒子に反応せず余っている過剰なカップリング剤がブリードアウトする問題がどうしても残る。
 
先日熱伝導高分子の開発を指導していたときに、微粒子の表面処理を高分子の吸着で行い材料開発に成功したが、湿熱劣化の耐久試験で吸着剤がまったくブリードアウトしなかった。
 

カテゴリー : 高分子

pagetop

2015.10/01 カオス混合装置

混錬は伸長流動と剪断流動で進むと新入社員の時に教えて頂いた。さらに究極の混練方式として伸長流動と剪断流動が組み合わされたカオス混合を教えていただいた。
 
ただ当時は誰も見たことがなく幻の技術だと、半分からかわれているような話だった。しかし指導社員からロール混練で起きているらしいとか、当方ならばその技術を創ることができるとかおだてられ、気がついたら30年近く経っていた。
 
カオス混合装置の第一世代は、PPSとナイロンを相溶させる装置として試行錯誤で創りだした。退職後も検討を続け、現在第三世代を検討中である。第二世代までは実用化に成功している。第三世代は開発に少し資金が必要なのである混練メーカーと交渉中である。
 
カオス混合は急速な伸長流動と効率の良い剪断流動が組み合わさって進行する。有名なのは京都大学でシミュレーションされた偏心二重円筒で発生するカオス混合だ。当方の第一世代と第二世代の方式は単純なスリット方式で二軸混練機の吐出口に取り付けて使う。
 
パッシブな装置だが混練効果は高く、PPSと6ナイロンの混合物がこの装置を通過すると科学では説明がつかない現象が生じる。すなわち相溶現象が起きるのだ。フローリーハギンズ理論ではχが正となる二相系は相溶しないことになっているが、単一相になる。スタップ細胞と異なるのは、再現良くその現象が観察されるだけでなく、すでに商品として使われ10年近く経っている現実の世界の話であることだ。
 
昨年高分子学会から招待を受け一時間ほど講演したが、講演の内容は若い技術者に評判が良かった。経験知と暗黙知を中心に講演を行ったからだと思っている。
 
一部最近の研究例で形式知も紹介したが、ほんの3分程度で、この講演はほとんど体験談のようになっていた。
 
講演会場では学会という性格上PRを控えたが、問い合わせは数件あった。しかし昨年は自分で販売するところまで考えていなかったのでせっかくのビジネスチャンスをつぶしたが、製作と販売を協力してくださる会社が現れたので今年からその会社で積極的に売り出すことにした。ご興味のある方は、まず、弊社へお問い合わせください。
 

カテゴリー : 一般 宣伝 高分子

pagetop

2015.09/30 研究開発の罠

フォルクスワーゲンのディーゼル車で起きた問題は、北米市場で売り上げを伸ばしたかったからという説明が一部の記事に書かれていた。しかしそれだけのためにしては、世界中の市場を失う恐れのあるリスクの大きい戦術だった。経営者がまともに判断していたなら、企業としてそのような戦術をとらなかっただろう。また、不正が10年も放置されていた状況も理解できない。
 
この不思議な事件についてはやがて解明され、ノンフィクションの読み物も出版されるかもしれないが、当方の経験から担当者及び組織リーダー、特に研究開発部隊のリーダーの技術者魂を疑う。責任は経営陣が負うことになるのだろうが、フォルクスワーゲンの技術者たちは不正を10年も放置しなければいけなかった無力さの罪をどのように償うのか。
 
許されることではないが、仮に一時不正に手を染める戦術が開発戦略上必要だったとしても、不正の状態を速やかに回復する戦術を打てる様な戦略を立てておくのが研究開発リーダーの使命である。コンプライアンスが重視される現代の経営において不正は絶対に許されないが、例えば新製品の展示会などで張りぼての新製品がおいてあるのを稀に見かけるように、開発が間に合わない時の「インチキ」を、やってはいけないと解っていてもちゃっかりやってしまう技術者はいる。
 
不正の例ではないが、中間転写ベルトの開発を前任者から引き継いだ時にとった戦略で、商品に絶対登載できないと解っている技術をわざわざ開発した。商品にはできないが外部のコンパウンダーでは実現できない機能を容易に達成できることを示す技術を開発することにより、外部からコンパウンドを購入して開発を進めるという方針を変更し、コンパウンド工場建設の投資を引き出すというゴールをめざす戦略で、納期通り開発を成功させるためには必要な戦術の一つだった。
 
ところがこれは、商品化ステージの開発であるにもかかわらず、商品化できないことを技術者だけが知っている、という点で周囲を欺くような戦術である。本来このような戦術をとりたくなかったが、前任者の開発方針と計画を一度リセットするためには、どうしても必要な戦術だった。研究開発を成功に導くために、時として不誠実な業務を遂行しなければならない場面は技術開発競争の激しい業界では少なからず現れる。そこで誠実な道を選び失敗するのか、不誠実ではあるが成功の道を選ぶのかは技術者の究極の選択となる。
 
もし完璧な成功の道が見えているのならば、不誠実とわかっている戦略でもチャレンジしなければ、大企業では研究開発を成功させることができない時がある。大企業ではコミュニケーションによりコンセンサスを得るための手続きが煩雑なため、短期決戦における戦略ではこのようなことが起きやすい。
 
中間転写ベルトの開発では、カオス混合技術という科学では説明できない(それゆえまともに周囲へ説明できない)新技術の成功により、期限内に部品開発を終えることができ、経営陣に迷惑をかけなかったが、トリッキーな混練技術開発に失敗していたら、フォルクスワーゲンの事件ほどではないにしても、大変なことになっていた。しかし、事前に弊社の研究開発必勝法で戦略と戦術を立案していたので、必ず成功できる道が見えており、それゆえ不誠実と思われるような仕事も堂々と遂行し非科学の技術に対する支持を周囲から得ることができた。
   

カテゴリー : 一般 高分子

pagetop

2015.09/29 高分子材料技術

高分子やセラミックスの材料技術は、その使われる分野によっては形式知よりも実践知や暗黙知の占める割合が多くなる技術である。困るのはこの現実を理解していない人が多い企業で仕事をしなければいけない時だ。アカデミアで何がどこまで明らかにされている、すなわちどれだけの形式知が明らかにされているのか理解していない人がいる場合に出だしを失敗するととんでもないことになる。
 
このような場合には、技術に関するコミュニケーションで注意が必要である。科学で大抵のことが解明されているだろうと信じている人たちとは、特に気を付けなければいけない。そのような人たちには、まずその認識が間違っていることに気が付いてもらわない限り、コミュニケーションが難しくなる。
 
例えば、中間転写ベルトの開発体験で書いたように、形式知以外の話を議論の場で持ち出したところ素人扱いされ相手にされなくなった。また電気粘性流体の増粘問題では、実践知で解決したとたんにFDを壊した人が現れた。とにかく科学で大半を理解できると信じている人たちは、実践知や暗黙知を軽蔑する傾向があるので注意が必要だ。理解していてもミスをする。
 
一方実践知や暗黙知を重視している人とのコミュニケーションでは、その人の経歴を理解してコミュニケーションを行う必要がある。科学がすべての人たちよりもコミュニケーションはとりやすいが、意見がかみ合わなくなることがあるので、その人のバックグラウンドを理解したうえで議論をする必要がある。
 
例えば樹脂を扱ってきた人とゴムを扱ってきた人では混練に対する考え方が異なる。セラミックスを扱ってきた人とゴムを扱ってきた人では、プロセシングや力学物性の認識は大きく異なる。例えが少し大きく振れすぎたが、このような場合に議論を円滑にするためには聞く力が要求される。議論を始める前にその人の考え方をよく聞くことである。
 
形式知や実践知に対して調子の良い相槌をうつ人がいる。このような人とのコミュニケーションは比較的気持ちよく進むが、実のある議論まで発展しない物足りなさが残る。高分子材料技術分野で何か問題解決に当たりたいときには、形式知を掘り下げた専門家(本物のプロ)か、あるいは職人にまず相談するのがよいと思っている。
 
形式知を掘り下げた専門家であれば、その知の限界を理解したうえでアドバイスをしてくれる。また職人であれば自分の体験を一生懸命話してくれる。某大学の先生は、論文を一応書いてはいるが、PPSはよくわからない材料だ、と教えてくださった。また、押出成形について「行ってこいの世界だ」と教えてくれた職人は、ゴムのコンパウンドの設計と混練プロセスの重要性を熱く語ってくれた。
 
ビジネスコミュニケーションやコーチングなどの研修では、事務業務を扱うシーンが多い。基礎を学ぶには良いが、ここで学んだ内容を技術の現場ですぐに生かせないもどかしさがある。技術者の研修には技術者による技術者のための内容が必要だ。弊社へご相談ください。
  

カテゴリー : 一般 高分子

pagetop