最近高分子科学の分野であまり流行っていないが、線形破壊力学という学問分野がある。グリフィス理論や応力拡大係数などガラスやセラミックス分野では一定の評価を得ている。
セラミックスを勉強するときに数学の苦手な材料技術者がつまずく壁のような学問である。当方は数学やプログラミングは趣味のようなものだったので苦労しなかった。
1980年前後には高分子材料分野でもこの理論やパラメーターの応用がなされたが、芳しい結果が得られなかったようだ。しかし、ゴム会社の研究所では声高にこれらの理論を振り回し、理論に合わせてデータを取得していた研究者がいた。
ガラスやセラミックスに比較して、高分子材料は室温においてクリープ速度が速い。これも一因となり引張試験や曲弾性率測定では、破壊に至るまで引張速度の影響なども出る。
高分子科学としては少し怪しく見えるグリフィス理論や応力拡大係数ではあるが、この視点で高分子材料の破壊を眺めるのは有益である。
ガラスやセラミックス分野では科学的に耐えたこれらの理論やパラメーターだから高分子材料でうまく合わない理由は高分子材料の破壊に至る過程において高分子特有の問題があると理解できて、高分子と言うものをイメージしやすい(注)。
言い換えると、線形破壊力学の視点で高分子材料を眺めると、金属やセラミックスと異なる高分子の構造的特徴を「なんとなく」理解できる。「なんとなく高分子」という小説でも書いてみたくなる。
例えば横軸に弾性率をとり、縦軸を応力拡大係数とすると、セラミックスから金蔵、高分子まで反比例のグラフのようにきれいにサンプルの点が並ぶ。これは材料技術者の経験知として有名な事実である。
このグラフ面で高分子複合材料を眺めると、複合材料の開発方向が、弾性率と応力拡大係数を上げることという材料に求められる特性が見えてくる。
(注)ポリウレタン発泡体の開発もセラミックスを勉強してきた当方には面白い体験だった。この時発泡体をプレスしてシート化し諸物性を評価していたら笑われた。意味が無い、と言うのだ。グリフィスの理論で問題となる欠陥よりもはるかにおおきなセル構造の発泡体と圧縮シートを評価しても解析が難しいことは分かっていた。しかし、シート化して測定されたデータには配合因子の特徴がきれいに現れた。発泡体のデータでは、配合因子の効果をうまく議論できなかった。アカデミアよりもアカデミックな研究所ではあったが、現象を眺める姿勢には多くの疑問となる思い出が残っている。
カテゴリー : 一般 高分子
pagetop
高分子混練技術の難しさは、科学の研究で進められている分配混合と分散混合の考え方を用いて実務で遭遇する現象を説明できないためだ。このような問題があっても機密の壁のため問題が表に出ず、その結果研究も進まない、というジレンマがある。
コロナ禍となる前に混練に関する小生の経験知をハンドブックとして上梓したが、その内容は40年以上前ゴム会社へ入社した時に、混練の神様と呼びたくなるような指導社員に指導された知識が中心になっている。
ただし、指導社員はダッシュポットとバネのモデルで混練現象を教えてくださったが、小生はそれを最新のレオロジーで書き直している。
混練に関する最新のレオロジーの知識をどこで入手したのかというと、学会活動である。今でも時間とお金が許せば学会に参加している。もう客員教授もやめており大学の先生ではないが学会で勉強することは継続している。
余談だが学会参加は一般人でも可能なので、時間のある老人は学会へ出かけ目の保養をしてくるとよい。最近の学会のプレゼン資料はカラフルで見ていて楽しい。腹のムシの居所が悪い時には意地悪な質問をして欲求不満の解消をするとよい。
いい加減な発表もあるのでそのような発表をポスターで探し、関連する口頭発表で奇妙なまとめ方に対して質問するとよい。若い研究者のためにもなる。枝葉の質問では研究者に失礼かもしれないが、当方も若い時にどうでもよいような質問をされて発表を台無しにされたことがある。遠慮はいらない。
混練技術に関する発表は、高分子学会でも1-2件ある。ただしこの時当方は質問をしない方針にしている。話がかみ合わなくなることが多いためで、老人ゆえにかみ合わない、と思われても気分が悪いからである。
カテゴリー : 未分類
pagetop
5Gはじめ情報通信分野でPPSの売り上げが世界的に伸びている。当方も5年ほど前に米国で問題となった通信会社向けにコンパウンド開発を中国で指導した経験がある。
その時、射出成型用添加剤としてPH01という新材料を開発している。この添加剤をPPSに添加すると流動性が著しく向上して0.5mm以下の薄肉射出成型が可能となる。
これはPPSの結晶化も抑制した効果もあり、割れにくくなったからである。さらに200℃で熱処理しても強度低下しない。この温度で24時間保持すると無添加のPPSと同様の強度低下を起こすことから、結晶化を抑制していると推定している。
おもしろいのは、このPH01を架橋タイプのPPSへ添加してやると繊維を引くことができた点である。これは某大学で繊維化装置を借りて実験して得た結果である。大学教授もその結果に驚かれていた。
もっと驚くべき結果は、この添加剤は一般の可塑剤と同じような効果がありそうな物性データが出ているにもかかわらず、この架橋タイプPPSが繊維化できたという結果以外にTgを下げない点も驚くべき結果である。
すなわち、高分子に可塑剤を添加すると可塑化効果により緩和速度の指標となるTgは添加量とともに低下する。しかし、この添加剤はそのような挙動を示さない。
この原因は、電子顕微鏡観察で明らかとなったのだが、ご興味のあるかたは弊社へ問い合わせていただきたい。弊社ではこの添加剤の特許に関してこれから審査請求をするところだが、事業として生かせる企業に特許を売却したいと考えている。日本でそのような企業が現れなければ、海外企業への売却も考慮中である。
カテゴリー : 電気/電子材料 高分子
pagetop
ペルチェ素子は片面で発熱その反対側で冷却が可能となる半導体素子である。発熱専用にはヒーターがあるのでペルチェ素子はもっぱら冷却用の熱ポンプとして利用される。すでにペルチェ素子を用いた小型冷蔵庫も発売されている。
熱伝導を知らない町の発明家は、これを空調服に活用できるということで特許を出願した。しかし、実際に空調服を作ってみると冷えない。あたりまえである。
密閉系でペルチェ素子を稼働させれば、熱ポンプとして機能して密閉空間内を冷却することは可能である。しかし、開放系でペルチェ素子を使い、そこに風をあてて冷気を送ろうとしてもうまく冷気を送ることはできない。
これはペルチェ素子表面に空気が接触して空気が冷えるまでに熱伝導が必要となるからだ。わずかな熱量を低減された空気はすぐにエネルギーを吸収して周囲の温度と同じになり冷気とならない。
これを冷気とするためにはそれなりの仕掛け、技術が必要であり、それを弊社の問題解決法で開発している。特許を3件ほど出願し、その中で重要な特許については出願時の審査請求をしているが、関心のあるかたは問い合わせていただきたい。
ペルチェ素子を応用した空調服については、今年の春すでに開発を完了しており、展示会にも出品したが、推進していた企業の経営状態が悪化し、せっかくのオリンピック前の良いタイミングを逃がした。
すでにその企業と調整済みなので、弊社に問い合わせていただければ技術やノウハウを公開いたします。空調服は成長分野ですが、外気の生暖かい空気しか送れない空調服ではなく、ペルチェ素子で冷却された快適な空調服を一度体験するともう2万円の空調服など買う気は無くなる。
カテゴリー : 一般
pagetop
ソフトバンクが東京ガスから供給を受け、ガスを販売するという。それも5%程度の割引価格である。さらに携帯電話ユーザーには5%の割引がある。
かつて、オール電化の掛け声でガス業界は将来の事業を心配した時代があった。2000年前後には東京ガスは、ガス発電システムの販売を発表している。ゴリラが出てくるあのCMも当時の東京ガスの活動の延長線上のキャラクターである
ところが数々の災害で電気のインフラが脆弱であり、ガスインフラが意外にもタフであることが分かってきて、オール電化の勢いはどこかへ消えた。
ご存知のように東京では災害対策のために無電柱化、すなわち電線を地下へ埋設する事業を展開しているが、町を見ればわかるように主要道路でさえ不十分な状況だ。
20年以上の間にガス発電システムはかなりの普及をしている。新築の家で太陽光発電システムを導入しているところはエネファームを同時に取り付けている例を近所で見かける。
電力自由化で余剰電気を個人が販売できるようになったためで、分散発電システムが稼働し始めた。おそらくガス発電システムは、これからも需要を開拓してゆくと思われるが、そうなると今度は電力会社の事業が心配になる。
その昔、IBMは大型コンピューターのリース事業で急成長したが、インターネットを待たずして、マイコンの普及による計算業務の分散処理が進み成長が止まった。それと同じように電力会社は原子力に頼っているとその事業は大型コンピューターと同じ末路になる。世の中は分散処理へ向かう、という人間社会の流れが新しい経験知として生まれた。
カテゴリー : 一般
pagetop
金曜日に公開したペルチェ素子を用いた空調服を開発した話の続編。この製品は5年前に企画されたらしいが、特開2020-97799が出願されている。弊社に顧客が相談に来られたのは昨年でこの特許の公開後である。
この特許は単なる町の発明家程度のアイデアであるが、この特許に基づき空調服を作成し評価したところ冷えなかった、それで弊社にご相談に来られた、という。
ペルチェ素子をご存知の方が特許を読めば、特許技術では体を冷却できないことをすぐに理解できる。熱伝導の機構を理解していない内容である。しかし、それでも製品を試作して確認しているところがすごい。
顧客はこの特許の出願人の一人で弊社に相談に来られた時に、この発明の何が問題なのかその場で解説し、コンサルをスタートしている。当方はインターネットでペルチェ素子を購入し、すぐに改良技術で実験を始め改良技術の成功を確信した。
そして昨年5月には、お客様がその技術ですぐにプロトタイプを作って評価して、冷えなかった空調服が冷えるようになったのでびっくりされた。そして某展示会にそれを出品し高い評価を受けたという。
相談されて実験を開始し3か月で技術ができたことになる。これまでの技術開発の経験で、3か月あれば何らかの結果を出せる自信があった(注)。
サラリーマン時代には大企業で実験環境が整ったところでの3か月だが、今回は実験環境をまず立ち上げる必要があったが、それでも3か月の完成である。老体に鞭打って実験環境を作り、特許出願までこぎつけた。
現在3件の特許出願を行っており、そのうち1件は出願時審査請求を行っている。本空調服に関心のあるかたは弊社へお問い合わせください。熱伝導の新コンセプトに基づく技術を紹介いたします。
(注)ゴム会社の新入社員の時に初めて担当した樹脂補強ゴムは、3か月で実用的な基本処方を開発している。その後担当したホスファゼン変性ポリウレタンフォームでは3か月で工場試作ができるレベルの配合を完成している。そして2か月後工場試作を行い、成功して始末書を書いている。この始末書に書いたホウ酸エステル変性ポリウレタンフォームは3週間で試作レベルの処方ができた。高純度SiCの発明では、実験開始から3日で99%以上の純度の真黄色のSiCが製造されている。お手伝いで担当した電気粘性流体の耐久性の問題は一晩で技術を見出している。一晩の実験で見つけた界面活性剤を添加しただけで耐久性が著しく向上した。なお「界面活性剤では電気粘性流体の耐久性問題を解決できない」という否定証明の報告書がこの時出されていたことなど知らなかった。どのような科学的に完璧な否定証明でも「できる」という事実でひっくり返ることをこの時学んだ。ゴム会社で研究開発必勝法を作り上げたが、それにより開発速度が加速度的に上がることを実感できた。写真会社では、6か月後には製品を完成しなければいけない状況で引き受けた仕事で、成功している。この時は3か月でカオス混合プラントを立ち上げ、テーマ請負後3か月後に6ナイロンがPPSに相溶したフローリー・ハギンズ理論で説明できないコンパウンドを生産開始している。
カテゴリー : 一般
pagetop
50年ほど前に耐熱性高分子の研究が盛んに行われた。そして一次構造の耐熱性への寄与について結論のようなものが出されている。ここで「ような」と書いたのは、一部研究者により見解が異なる点があるからだ。
そもそも耐熱性高分子と言っても空気中における耐熱性なのか、非酸化雰囲気における耐熱性なのかにより視点が変わる。空気中の耐熱性であれば耐酸化性を考慮しなければならず、不飽和構造は酸化されやすいので非酸化性雰囲気で耐熱性が高いと判定されても空気中では耐熱性の順位がさがる。
ゆえに耐熱性高分子と簡単に表現してもどのような高分子を耐熱性高分子と呼ぶのかは、「耐熱性」の条件により変わってくる。簡単に耐熱性高分子について論じることができない。
さらに一般使用の状況を考えたときに、ガラス転移点(Tg)が耐熱性の指標となる場合もある。例えば高分子構造材料では、Tg以上で緩和速度が上がるので、Tgの高い樹脂が選ばれたりする。
食洗器で洗浄可能なプラ容器かどうかはこのTgで決められている場合がある。すなわちTgが70℃以下の材料でできた容器を食洗器で洗浄すると変形する。但し、Tgが70℃以下でも一部架橋構造の導入された樹脂であれば変形しにくい。
この架橋構造も食洗器レベルであれば、結晶構造がその役目をできる。ただしこの時には結晶の融点が高く結晶化温度が十分に低い必要がある。
耐熱性高分子の開発は40年ほど前まで盛んに行われたが、以上の問題もあり研究は下火になっていった。また、当時の研究成果でも耐熱性=燃えにくさと一般化できないことも分かり、燃えにくい高分子の研究は難燃剤の開発へ中心が移動した。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
フェノール樹脂は耐熱性高分子として、合成樹脂の登場初期から活用されてきた。それゆえ燃えにくいだろうと誤解されている人も多い。
燃えやすさ燃えにくさの指標として極限酸素指数(LOI)がある。LOIは酸素と窒素の混合空気中の酸素濃度を指数として表現した数値で、21より大きい材料は燃えにくく、21より小さい材料は空気中で燃え続ける。
ちなみに、21という値は、空気の組成をLOIで表現した時の数値である。この数値でフェノール樹脂の燃えやすさを表現すると、製造条件によりLOIが19から38以上まで大きくばらつく。
すなわち、耐火性が高いと思われているフェノール樹脂も、製造条件が悪ければ空気中で燃えてしまう材料となる。ただし適切な製造条件が選ばれ管理された状態で製造されたフェノール樹脂ならば大変燃えにくい樹脂となる。
フェノール樹脂には酸触媒で硬化させて樹脂を製造するレゾール型フェノール樹脂とアルカリ触媒で硬化させるノボラック型フェノール樹脂の2種類存在する。いずれの樹脂も触媒量と製造条件が不適切であれば空気中で燃えやすいフェノール樹脂となる。
この燃えやすいフェノール樹脂と燃えにくいフェノール樹脂の差異は、三次元化した割合の違いで現れることが50年近く前にパルスNMRと熱分析を組み合わせて明らかにすることができた。
すなわち、一次構造が線状に長く伸びているような部分が多いフェノール樹脂は、燃えやすく、一次構造が分岐し網目を形成するように伸び、自由体積と呼ばれる部分が少ないフェノール樹脂は燃えにくいことが明らかとなった。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
世の中には、科学的に矛盾する二つの現象について二律背反と言う言葉があり、それを両立することは不可能と結論されてきた。表題も熱伝導の仕組みをご存知の方であれば、両立するのは二律背反で不可能と一笑に付されるかもしれない。
すなわち、熱伝導性の高い材料は、それゆえ熱が逃げるのも早く、熱しやすく冷めやすいのが科学の常識である。冷却であれば、冷やしやすくすぐに常温にもどる材料となる。
電子伝導では、半導体材料が帯電防止分野や複写機などで実用化されている。この半導体材料は、その導電性領域をうまく制御してやると、帯電しやすく電気を流しやすい材料とすることができる。
絶縁材料は誘電体と呼ばれ帯電しやすいので、電気分野では二律背反を実現する材料が存在する。これは科学的に解明されていないが、いくつかの実験、すなわち当方の経験から、帯電は直流的な現象であり放電は交流的な要素が機能するためと理解している。
帯電しやすく放電しやすい材料はトナーを用いた電子写真システムでは重要な機能であり、科学的に未解明なところがあっても技術が進歩してきた。
しかし、熱については密閉状態にすれば、すなわち内部の気体を外部に出ないようにすれば冷却後の保冷は可能となるので、冷却しやすく保冷もしやすい材料はニーズが高くなく技術開発されていなかった。
加熱機器では、オイル循環装置が加熱しやすく保温機能も持っているので、一応熱現象の二律背反を実現している技術とみなせるが、空調服でこの仕組みを取り入れると宇宙服のようなスタイルとなってしまう。
もっと簡便に熱伝導の二律背反技術を実現できないかと考えて、実験を行い昨日の発明にたどり着いた。この発明により1着3万円前後の空調服を実現可能で、プロトタイプができておりこの技術にご興味のある企業は弊社へ問い合わせていただきたい。
カテゴリー : 一般 電気/電子材料
pagetop
この数年で形成された新マーケットとして空調服がある。暑い夏の工事現場を涼しくする服として、扇風機付きの空調服が開発された。改良が進み現場作業者以外にも使用されるようになった。そして大ヒットしNHKでも取り上げられた。
ただ、この空調服のなきどころは、扇風機で外気を体の中に送る仕組みであり、ホコリっぽいところでは体に埃を吹き付けることになる。さらに、このコロナ禍のシーズンでは、コロナウィルスを吸い込むような仕組みとなっている。
本当にウィルスを吸い込んだかどうか知らないが、ただ扇風機をつけただけの仕組みで大ヒットしたならば、ペルチェ素子で冷却したら面白いだろうということで、発明がなされ特許が出ている。
しかし、なかなか製品が出てこないと思っていたら、ペルチェ素子で冷却しても期待通りの冷却が難しい、ということで開発がとん挫していたようだ。実は昨年この発明者が相談に来られたのだが、実物を前にして相談内容を聞き、公開されている特許のままでは実用化できないことがすぐに理解できた。
そこで新たな特許を3件出願し、当方のアイデアと実験結果を基にプロトタイプを組み立てたところ気持ちよく冷えた。ペルチェ素子を大きくすればガンガン冷えることは理解できたが、この大きさでこの気持ちよさからこれ以上改良しない方が良い、と感じた。
ところが、である。相談者の主たる事業がコロナ禍で資金繰りが悪化し、一時は弊社への支払いも滞り、結局今年の夏の商品化ができなかった。来年にむけてどうしようか、という相談をしているところだが、弊社としては開発費を回収したいので、この空調服を事業化したい人を探している。詳細は弊社へご連絡してください。
なお、本件は相談者も了承済み事項であり、事業化に際してはすべて弊社一任となっております。弊社では、今月先着順に弊社事務所で技術を公開したいと思っています。特許はまだ公開されていないので、周辺特許出願のご希望に沿うことが可能です。
カテゴリー : 一般
pagetop