活動報告

新着記事

カテゴリー

キーワード検索

2014.05/10 フローリー・ハギンズ理論(5)

リアクティブブレンドでは、反応条件さえ工夫すればχが大きなどのようなブレンド系でも相溶させることが可能である。また、バルキーな側鎖基を有するポリオレフィンにポリスチレン系TPEを相溶させる方法からエントロピーの寄与を確信し、そのヒントと過去の経験から新たなカオス混合装置を開発した。

 

この装置を用いると混合時のエントロピーをプロセスの中で下げることにより相溶を進行させることが可能と推定しており、緩和速度が遅い高分子の系ではTg以下に急速に冷却してやると室温で相溶状態を維持できる。

 

それでは非相溶系を均一に相溶させる方法は他に無いのか、とラテックスで検討してみた。モノマー構造でSP値が離れている組み合わせでコポリマーのラテックスを合成すると一応リアクティブプロセシングなので均一な構造のポリマーが得られる。条件によってはコアシェルのようなラテックスもできたりする。

 

それぞれのホモポリマーでラテックスを合成してそれを混合したらどうなるか。この実験ではコロイド化学の知識が少し要求されるが、安定な塗布液が得られたとして話を進める。この混合溶液で単膜を作成し強度測定を行うと、コポリマーの場合と同様に弾性率の高い方のラテックスが増加すると単膜の弾性率も上昇する。

 

5wt%前後ではコポリマーのほうが弾性率が高いが、10wt%程度ではほぼ同じ弾性率になる。但し、コポリマーに比較するとややヘイズが高い。得られた単膜の高次構造を調べてみると50nm前後の二種類の球を分散してできたような高次構造が観察される。この高次構造からコポリマーに比較してややヘイズが高いのもうなずける。

 

一応力学物性については、混練で得られる場合に比較し、相溶状態に近い物性となっている。また、光学物性についても10枚重ねで測定されたヘイズ値に差が見られる程度なので分野によっては使用可能な材料と推定した。完全な相溶系ではないが、二種類のポリマーが相溶したときに期待される物性を技術的に得る方法としてラテックスによる混合は一つの手段と思われる。

カテゴリー : 連載 高分子

pagetop

2014.05/08 フローリー・ハギンズ理論(4)

1980年代に樹脂補強ゴムからポリウレタンやフェノール樹脂の難燃化、そして高純度SiCの事業立ち上げ、電気粘性流体の開発、超伝導セラミックスの開発など多種多様な研究開発を手がけたが、フローリー・ハギンズ理論(FH理論)に必ずどこかでお世話になった。

 

実務では低分子溶媒を用いてSP値を測定していたが、高分子を混合したときの状態予測では、教科書に書かれた高分子のスピノ-ダル分解のマンガを見ながら頭に状況を思い描いていた。もしOCTAのSUSHIがあったなら毎回利用していただろう。

 

有機高分子と無機高分子はそのモノマー単位が有機と無機なのでχは大きな値となる。すなわち絶対に相分離して均一に混ざらない組み合わせである。実例を示せばポリエチルシリケートとレゾール型の液状のフェノール樹脂を混合しようとしてもすぐに相分離する。

 

コロイドを撹拌する専用の混合装置を用いても撹拌しているときにも白濁し決して透明にならず、撹拌を止めるとすぐに二相に分離してくる。フェノール樹脂が重いので沈殿するのだ。とても分子レベルで均一になると思えない組み合わせである。しかしここへ両者の反応に共通して用いることが可能な酸触媒を添加すると様子が一変する。

 

撹拌中に相分離していてもその界面で反応が開始し、透明度が上がってくるのだ。ただしこれは最適な触媒が選択されたときだけで、不適切な触媒、例えば片方の反応速度を著しく早め、両者の反応速度差を大きくするような触媒を添加すると、片方のポリマーだけが反応してゲルになり沈殿してくる。

 

例えば硫酸を用いるとポリエチルシリケートの反応速度が速まりシリカが撹拌中に沈殿してくる。トルエンスルフォン酸であれば量を最適化しない場合にはフェノール樹脂のゲル化が進行し、撹拌中にフェノール樹脂のゲルとシリカとポリエチルシリケートに分離し悲しい状態になる。

 

適切な酸触媒を選択してやると、ポリエチルシリケートとフェノール樹脂の界面で反応が進行し、相分離することなく均一のゲルが生成し、このゲルの炭化物を用いてSiC化の反応を行うと均一素反応の取り扱いが可能となりSiC化の反応エネルギーを求めることまでできる(注)。

 

すなわち、リアクティブブレンドは、1980年代にFH理論で相分離すると推定される高分子の組み合わせでも均一に相溶した状態を作ることが可能な唯一の方法であった。これが21世紀になるとリアクティブブレンドでなくても均一に相溶した状態を作ることが可能になり、PPSと6ナイロンが相溶したフィルムを製造できるようになった。材料技術の進歩である。

 

しかし、科学的には不明の部分が多いので科学の進歩ではない。このような場合世間では怪しい技術と捉えるが、STAP細胞と異なり再現性が高い、すなわちロバストの高い技術である。この技術については、退職後の研究成果をもとに来月6日に行われる高分子学会主催のポリマーフロンティア21で報告する。招待講演者として選ばれており1時間お話しさせて頂く。

 

(注)学位論文の一部である。当時2000℃まで計測可能なTGAが無かったので、真空理工(株)のご協力をえて、自ら心臓部分を手作りした。このTGAについては特許を出願したが30年前のことで、楽しい科学者人生最後の頃である。

カテゴリー : 連載 高分子

pagetop

2014.05/07 フローリー・ハギンズ理論(3)

すでに指摘したように教科書に書かれているフローリー・ハギンズ理論(FH理論)は、二次元平面の中に二種類の高分子を仮想的に混合状態にして押し込んだときの自由エネルギー変化を議論している。そして、このモデルではそれぞれの高分子のモノマー構造が重要な意味を持っている。換言すればモノマー構造だけで判断しているに過ぎない。

 

だからSMALLの方法というSP値の計算結果とχパラメーターはうまく相関する。実際の高分子を混合したときには、このモノマー構造以外に鎖状の高分子が取る立体構造にも自由エネルギー変化は影響を受けるはずである。

 

このような仮説で、側鎖基にバルキーな基を持ったポリオレフィン樹脂にポリスチレン系TPEを相溶させる実験を行った。どのようなポリステレン系TPEでも相容するわけではない。ちょうどポリオレフィンの錠に対してカギの関係になるような立体構造のTPEだけが相溶し、透明な状態になる。

 

10年以上前にD社お願いし、様々なポリスチレン系TPEを合成してもらい、この錠と鍵の関係を探す実験を行ったら、うまく16番目に合成されたTPEで透明なポリマーアロイを合成することができた。この実験結果は、モノマー構造だけでなく高分子の立体構造も高分子の相溶に効果があることを示している。

 

余談だがこのポリマーアロイでフィルムを製造すると偏光フィルムとなり、クロスニコルの位置にすると暗くなる。ベンゼン環が複屈折を持つためだが、この詳細の特許出願は成されていない。当時の開発目標とは異なる性質で特許出願ができなかったためである。もしご興味のあるかたは問い合わせて頂きたい。

 

この実験に成功すると、二種類の高分子が混合された状態で圧縮を受けるとどうなるかが興味を持たれる。メカニカルな力で強引に高分子を接触させるぐらいの状態にして、緩和時間以内に両者の高分子のTg以下に冷却すれば相溶した状態を保持できるはずである。

 

このような仮説で実験したのが先日書いたPPSと6ナイロンの相溶化である。これは運良く開発ステージが製品化直前で、PPS/6ナイロン/カーボンの処方を変更してはいけない、という状態でテーマを引き継いだので大手を振って実験ができた。ポリオレフィンとポリスチレン系TPEの時のようにこそこそ実験を行う必要が無かった。

 

 

カテゴリー : 連載 高分子

pagetop

2014.05/05 フローリー・ハギンズ理論(2)

テルマエロマエ2を観た。前回同様にばかばかしいお話しで無条件に面白かった。現代の温泉からアイデアを拝借し古代ローマの風呂を発明する、という方法は技術における発明の一つのやり方である。毎回平たい顔の部族として日本人が紹介されるが、古代ローマ人を演じているのも日本人の俳優である。同じ日本人でもその顔は立体的に大きく異なるのである。

 

フローリー・ハギンズ理論では、立体的に大きく異なる2種の高分子を、二次元平面の格子の中に押し込んでその自由エネルギー変化を論じている。高分子が平たい形態をとって挙動しているならば、この二次元平面における考察でうまく説明できる。しかし、高分子はその長さ方向にも様々な形をとり、これをコンフォメーションと呼ぶが、そのエントロピー変化はこの理論において無視されている。

 

テルマエロマエでは、時空を越えた古代と現代の往来の表現をオペラの歌声とともに高速の流れとして表している。今回はその流れの表現として水洗便所まで飛び出した。そして太った関取が時空の流れの中で変形せず、詰まってしまう。詰まってしまったのに次のシーンではうまくワープしているのである。ばかばかしい。

 

2種類の混合された高分子の融体を細いスリットに高速で通したらどうなるか。恐らく大きな剪断応力が発生し、分子は長く引き延ばされる。1mm前後の厚みで幅2cmのスリットへPPSと6ナイロンを混合し押し込んだら相溶し透明な樹脂が流れ出してきた。GPCで分子量分布を測定しても特に低分子が増えたというわけではないので、大きな剪断応力がかかっても分子の断裂は起きていない。

 

本来非相溶系の組み合わせがとんでもない領域にワープしたのである。そのままPPSのTg以下へ急冷すれば6ナイロンが相溶した材料ができる。その材料で作られたフィルムはPPS単独の場合に比較し、もの凄く靱性が向上していた。

 

 

カテゴリー : 連載 高分子

pagetop

2014.05/04 フローリー・ハギンズ理論(1)

ポリマーアロイを設計する際によりどころとなるのは、高分子の相溶を扱うフローリー・ハギンズ理論(FH理論)であるが、この理論のモデルは極めて単純で実際のブレンドされた高分子を議論するには不十分である。

 

この理論ではχパラメーターが定義されているが、高分子の立体的な構造の寄与、すなわちスター型とリニア型の差異を議論することができない。また、低分子の混合から導かれるSP値と相関するがこれも高分子の分子量のことを考えると気持ち悪い。

 

実務では、低分子溶媒に高分子を溶解しSP値を求めているので、χパラメーターで議論するよりはSP値で議論していることになる。またFH理論は単純な格子理論から導かれたものであり、高分子のモノマー単位(構成単位)をそれぞれの格子に隙間無く当てはめて考えているので、そのモデルで扱える高分子は限られる。

 

実務で用いている方法に近い研究から高分子のSP値を求める計算方法(Smallの方法)が導かれている。官能基の引力定数表をもとにモノマー構造からSP値を計算するのだが、経験的には60%前後の精度で当てはまるように思われる。

 

かつてラテックスの分子設計ではSmallの方法を用いていたが、40%前後ははずれたために手直しが必要だった。具体的にはPETとゼラチンとの接着層の設計で使用していた。PETのSP値に合うようにラテックスを設計するが、実際に接着力を計測すると、40%前後はほとんど接着しなかった。そのためラテックスのモノマー構成を見直し、再度合成するのだが2-3回の試行でうまく接着できるラテックスが見つかった。

 

これをOCTAのSUSHIを使って検証してみても同じような確率である。SUSHIにしても相溶の判定はSP値を用いているからだが、面白いのは界面幅というパラメーターだ。このパラメーターは、おおよその相溶性のズレを予測する時に使えそうである。

 

カテゴリー : 連載 高分子

pagetop

2014.04/29 フィルム成形と押出機(5)

将棋の世界で異変が起きているという。プロ棋士がコンピュータ相手に将棋で負け続けているそうだ。その様な状況で、将棋がコンピュータにより完全に解明されたらどうするのか、と羽生プロに尋ねたら「その時は桂馬が横に飛ぶとかルールを少しだけ変えれば良い」と答えたそうだ。

 

終盤力が勝負の分かれ目といわれていた将棋は、やがて中盤力の研究が中心になり、現在は序盤が勝負になっているという。将棋の世界は弊社が運営する未来技術研究部のホームページ(www.miragiken.com)で紹介したような逆向きの推論のように解明が進んでいる。押出成形も結論に当たるフィルム材料に着目したならば、押出機や金型だけでなくコンパウンドまで研究を遡る必要がある。

 

フィルム成形では、溶融しやすいPETやPP、PEなどのフィルム成形は、押出機で何とかなった。しかし、PPSなどのエンプラのフィルム成形やカーボンを分散した半導体フィルムの成形など次第にその成形技術が難しくなってくると、将棋と同じように序盤、すなわち分子設計やコンパウンディングが重要となってくる。

 

しかし、昔書かれた押出成形の教科書にはコンパウンディングとフィルム成形の関係については書かれていない。押出機で話が始まっている。しかし、押出機だけではフィルムで発生するトラブルを解決できないケースがある。押出機の工夫だけでは解決できず、混練機から金型まで一連のシステムとして捉えなければ、良好の品質のフィルムを成形できないケースが出てきた。

 

しかし押出成形技術の解明はまだ完璧にされていない。射出成形は金型で樹脂の表面は制御される。ところが押出成形では、金型のリップを樹脂が出た後も樹脂の表面は冷却されながら変化している。表面だけでなくフィルムの中心部も変化しているが温度測定可能な表面に比較し、中心部の変化は複雑で解明が難しい。

 

カーボンを分散した樹脂でフィルムを押出成形すると、表面と中心部で体積固有抵抗が異なることから冷却過程の高次構造変化が複雑になることを予想できる。コンピューターでシミュレーションをおこなうとすれば、パーコレーションの概念をどのようにプログラミングするのかが問題となる。押出成形は簡単に見えるが将棋の世界よりも難しく、いまだノウハウが要求される分野である。

 

 

カテゴリー : 連載 高分子

pagetop

2014.04/28 フィルム成形と押出機(4)

押出機については樹脂を押し出す機能だけを考えた方がシステムを組みやすい。すなわちコンパウンディングは混練機で行い、押出機では、それを均一に再溶融して押し出す機能だけ考える。混練機の練りが浅いから、という理由で押出機に混練の機能を持たせる考え方とは異なる。

 

もし押出機に混練の機能を持たせたいのなら、単軸押出機を二軸押出機に交換し、徹底して混練を行うようにするが、単軸押出機で二軸混練機のコンパウンディングで不足した練りを補うことを考えない方が良い。単軸押出機を使用する場合には、樹脂温度の均一化に配慮することが大切で、高分子にさらに練りを加えるプロセスを考えない。

 

前工程で混練が完了していることが重要である。もし押出成形の段階でコンパウンドの練りが浅いという問題が発生したならば、混練工程でその問題を解決する。理由は単軸押出機で仮に問題解決できたとしてもロバストの低いシステムになる可能性があるからだ。

 

高分子の中にはフィルム成形で混練工程が不要と思われている材料も存在する。あるいはフィルムに機能性や高い品質を望まない場合には押出機に樹脂を投入する前に混練する必要はないかもしれない。その様な場合に押出機の中で混練もやってしまおう、という考え方は当然出てくる。この場合には押出機の中で混練が完結していることを確認しなければいけない。中途半端な混練状態で押出機のシステムを立ち上げた時にはフィルム品質はばらつく。

 

例えばカーボンを高分子に分散し、10の9乗レベルの半導体フィルムを製造するときに、十分に混練されていない場合には抵抗のばらつきが発生する。混練工程で十分に混練し、安定した抵抗となる状態のコンパウンドを用いたほうが良い。

 

カテゴリー : 連載 高分子

pagetop

2014.04/27 フィルム成形と押出機(3)

フィルム成形の単軸押出機で、L/Dの小さな押出機が使われたときの問題は、ミキシングゾーンが短いために高分子融体の均一性が上がらないことである。この問題は設備導入前にすぐに確認できる場合は良いが、多くは導入後の後悔となる。後悔しても、設備は高価なのでL/Dの大きな押出機に交換することができず、それで何とかしようとする。

 

フィルム成形に用いる押出機のL/Dは中国で会ったドイツ人が言っていたように余裕を持った仕様が良いと思われる。余裕があれば何か問題が生じたときに設定温度の工夫とスクリューの設計で乗りきることが可能だが、余裕の無い設備では、トラブル対策に限界が生じる。L/Dが25と35の設備では、若干35の方が高価だが、もし選択できるのであれば35あるいはそれ以上の設備を購入しておくのが賢明だろう。

 

L/Dに余裕があるとミキシングゾーンの工夫が可能である。ミキシングゾーンの考え方については定説は無いが、例えば、バリアミキシングと呼ばれる方式のミキシングヘッドを用いた場合には、比較的軟化しやすいポリマーに対して積極的に未溶融ポリマーを残す条件、すなわち高吐出条件をとってポリマーをミキシングヘッドに導き一気に溶融を完了させるとともに固体ポリマーの溶融熱を利用して低温の溶融体を作り出すノウハウがある。

 

ポリエチレンで低温の融体を得たい場合にはこの考え方は有効である。しかしポリエチレンで成功した手法が他のポリマーでも有効と限らないのが本技術の難しさである。また、問題が見えにくい場合には過去の事例にとらわれ、問題解決できなくなるケースも存在する。

 

例えばフィルムに散見されるブツの場合には、その原因の特定が難しい。ブツで正体不明の場合(注)には未溶融のポリマーを疑ってみるのは良い着眼点であるが、その対策になってくると考え方は多種多様である。当方は、溶融しやすいようにコンパウンディングで対策を取っておく、というのが正解と思っているが、混練工程を他社にゆだねている場合にはそれが難しく対策として取れない。

 

退職前に担当した業務では、コンパウンドメーカーにいろいろと要望を出していたら、技術営業から素人には分からないよ、と言われしかたなくコンパウンドを自分で開発することになった。中古の混練機を購入し考えていた方法で混練してみたら一発で問題解決できた。もしコンパウンドメーカーに協力してもらえないときには、問題解決のために混練工程を取り込む必要がある。短い押出機を用いる場合には、混練工程は重要である。

 

(注)フィルムのブツあるいはボツは様々な原因で発生する。ここで述べた未溶融ポリマーや気泡、フィラーがはいっていたならその凝集物など多種多様である。ブツ対策にはまずその分類が重要でブツの分類を行うと対策が見えてくる。面倒でもまずブツの分類が対策の第一歩である。

カテゴリー : 連載 高分子

pagetop

2014.04/26 フィルム成形と押出機(2)

押出成形の教科書を読むと押出機についてかなりのページが割かれている。PETやPPSの押出成形を経験して、押出機にはコンパウンドを溶融し押し出す能力があれば十分と思うようになった。押出成形に用いるコンパウンドは事前に十分な処理を混練機で行っておくのがコツである。しかしこれは少し教科書とは異なる見解である。教科書には押出機で混練する話まで書かれている。

 

混練機の機能と押出機の役割を明確に分担して考えるのは、射出成形の設計と同様である。射出成形では金型に樹脂を押し流すので、成形後の表面は金型の精度に支配される。ゆえに射出成形では押出成形ほど押出機について深く考えられた歴史はなく、L/Dの短い押出機になっている。そしてそれで不都合は生じていない。しかし、押出成形では、金型のリップ部の仕上げの影響も大きいが、大半はコンパウンドの素性でその表面の性能が支配される。

 

昔ゴムの押出成形を担当している職人から、「押出成形は行ってこいの世界だ」と教えられた。即ち、プレス金型でゴムを成形する場合には、金型の仕上げでゴムの成形精度は左右されるが、押出成形では、ゴムのコンパウンドの「でき」が成型精度を左右している。「行ってこい」とは、押出成形ではそのコンパウンドを丁寧に送り出すだけだ、という意味である。

 

この職人の言葉は押出成形技術をうまく表現している、と感心したので30年以上経った今でも覚えている。すなわちフィルム成形に用いる押出機では、コンパウンドを金型に押し出すこと以外を求めてはいけないのである。コンパウンドはその前に十分造り込んでおくのが押出成形の鉄則である。しかし30年の間に出会った押出成形の技術者からこの職人の言葉を聞いたことがないし、教科書にも書かれていない。

 

PPSの押出成形を担当してさらに理解を深めたのだが、コンパウンドを溶融し押し出すだけでも大変である。温度を上げれば樹脂を溶融できるのではないか、という人もいるがそれは押出成形をご存じない方である。確かに温度をあげればコンパウンドを溶融させることはできる。しかし、その温度を上げた影響がフィルムに現れるのだ。すなわち押出成形では押出機の中ですなおに溶融してくれるようにコンパウンドを造り込んでおかなければ、成形体の表面をうまく制御することはできない。

 

カテゴリー : 連載 高分子

pagetop

2014.04/25 フィルム成形と押出機(1)

フィルム成形には押出機が使用される。一般に押出機といえば単軸押出機を意味するが、二軸押出機も使用される。混練機にしろ押出機にしろ単なる装置と考え、単純に教科書に書かれた一般の仕様で満足している人が多いが、専門技術者により技術に対する見解が異なる。すなわち教科書に書かれているのは一例であって、実際の現場では様々な問題が発生しその解決に当たった結果、特殊な押出機も考案されている。

 

これは最近中国で建設されたPET工場を見学したときにドイツ人技術者に聞いた話であるが、PETの成膜においてL/Dが40程度の押出機を使うのは常識だそうな。日本で見かけるのはL/Dが25から30程度が多い。PET以外でもPPやPSでもその程度の押出機が使用されている。L/Dが40の押出機を使うといったら日本では笑われるかもしれない。

 

しかしそのドイツ人が言うには、L/Dが小さい単軸押出機では樹脂の溶融が十分にできないという。通訳を介して聞いた話なので正確性に欠けるが、若干のドイツ語の知識もあったので通訳の言葉に間違いの無いことを理解できた。PETは樹脂の中でも溶融しやすく未溶融ゲルのできにくい樹脂である。当初ばかでかい単軸押出機を見つけたときに中国人がドイツ人に騙された、と思ったが、ドイツ人技術者は理由を真顔で応えていたのでウソではないと思われる。

 

また、当方の経験もドイツ人の回答を信じたくなる。かつてPET成膜を担当したことがあるが、押出機は、日本の標準的な大きさであった。すでに生産が安定し研究開発も終わっていたが、輝点異物の問題は残っていた。もっともこの問題は無いことになっていたのだが、基巻き一本を体育館に広げて調べてみたら結構見つかったのである。

 

品質上問題が無ければ0としても良いのだが、技術報告書には正しく実態を残しておかなければ、その後の担当者が0を前提に考えることになり、問題解決できなくなる。表面処理工程で問題が発生したので、その解決策を考えるときに輝点異物を疑ったのである。転職者であったから内部事情などお構いなしの仕事のやり方で原因を見つけることができた。

 

この時の経験から押出機については少し疑問に思い、フィルム成膜について、コンパウンド段階の処理の重要性を考えてきた。たまたま20年ほど経ち、中国でその回答を見つけた。

 

カテゴリー : 連載 高分子

pagetop