数多くの測定データをA先生にお見せしたところ、単純に静電容量が効いている結果ではないか、といわれた。さっそく直流抵抗とコンデンサーの組み合わせモデルを使った数値シミュレーションを行おう、ということになった。
1次元のモデルでは、抵抗とコンデンサーの数が問題になる。この総数をNとし抵抗の数をnとすればコンデンサーは(N-n)となる。そしてその配置を工夫すると一本の回路は容易に数式化できる。これがNとおりあるとして、Nを無限大にすると式が完成する。
完成した式について解くとシミュレーションが完成する。
おもしろいのはこの程度の雑なシミュレーションで実験結果をうまく説明できたのだ。三次元抵抗分布のシミュレーターを開発していたので同様の方法で抵抗とコンデンサー二元系のシミュレーションを行わなければいけないのか、と心配していたが、技術の理解なのでこの程度で良い。
このシミュレーション結果を用いてコンデンサー成分を大きくしてゆくと低周波数領域の周波数の異常分散が大きくなる現象を説明できた。すなわち、導電性微粒子の距離が小さくなってゆくと導電性粒子間で形成される静電容量は大きくなり、低周波数になればなるほど大きなインピーダンスとなる。
一方このような現象の場合に直流で表面比抵抗を計測すると抵抗は下がってゆく。すなわち導電性粒子の抵抗は変化しなくとも、クラスターが形成されると静電容量が大きくなって低周波数になればなるほどインピーダンスが上がるという現象が起きることになる。
数値シミュレーションの結果から周波数のインピーダンス依存性を調べた多数のデータはパーコレーションでクラスターが形成される過程を調べた結果であることが分かった。
この結果から、帯電防止材が異なると、すなわち導電性材料の抵抗が異なると表面比抵抗の値が同じでも100Hz以下のインピーダンスが異なる現象が生じることも理解できた。また、同一材料でもクラスターが小さいならば表面比抵抗が同一でも100Hz以下のインピーダンスが異なることも推定できた。すなわち100Hz以下のインピーダンス変化をみれば、同じ帯電防止材料を使用しているときのパーコレーション変化をうまくモニターすることが可能となる。(続く)
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
100Hz以下のインピーダンスが増加すると帯電防止性能が向上する、という現象は、電気化学の素人からみると驚くべき結果だが、電気化学の専門家からは、帯電後の放電が直流的に起きるのではなく交流のように起きている、と考えれば当たり前の結果ではないか、となる。
すなわち自然現象を眺める時に、眺めている人の知識や経験が現象理解に重要であることを理解できる。同じ現象を見てもその現象を支配している本質の知識が無ければ見落としたり、現象の理解ができなかったりする。
この逆もあり得るわけで、現象の本質について知識がありすぎるために見落としてしまう、あるいは新しい考え方ができなくなってしまう、という場合だ。STAP細胞の発見はまさにその例で、小保方さん以外に同じような実験を行っていても皆STAP細胞のヒントを見落としていたが、小保方さんは素直に現象を捉えイノベーションに結びつく発見を行った。
知識があっても無くても自然現象における新しい発見を見落とすことになる。発明や発見を左右するのは知識の量ではなく自然現象との関わりあいに対する意欲だろう。このインピーダンスの実験は、疑問を持った若い担当者とその疑問に答えられなかった上司が、特許出願だけでなく科学的にも現象を明らかにしたいという意欲を持ったことにより始められた。
低周波数領域のインピーダンスと灰付着距離との相関が普遍的な真理かどうか確認するために入手可能なフィルムを使い多数の実験を行い精度を高めた。その結果、相関係数が1に近いデータ群が得られた。一方、サンプル数が増えるにつれ、表面比抵抗とゴミ付着距離との相関は小さくなっていった。(続く)
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
帯電防止の実技テストの一つ、タバコの灰付着テストとは、温度と湿度などテスト環境が定まったところでフィルム表面をゴムでこする。そして帯電したこのフィルムをテスト直前にタバコを吸い発生した灰を集めた上にかざす。2mほど上から徐々に帯電したフィルムをおろしてゆき、タバコの灰がフィルムにつき始めた距離を測定する。
テスト方法からわかるように帯電しやすく放電しにくいフィルムの場合にはこの距離が長くなる。帯電しやすくても放電もしやすいフィルムの場合には、タバコの灰との距離を縮めてゆく過程で徐々に放電するので灰付着距離は短くなる。
帯電防止処理された写真フィルムの場合には0となる。帯電防止性能が悪くなるに従い、その距離は伸びる。すなわち帯電防止性能が悪いフィルムの場合には、遠い距離からタバコの灰を吸い寄せる傾向がある。
まったく帯電防止されていない絶縁体フィルムの場合には、低湿度の環境でこの実験を行うと2mの高さでもタバコの灰を吸い寄せる。初めてこの実験をしたときには、帯電現象のあまりの能力にびっくりした。
さて、帯電防止性能があがると灰付着距離は短くなり、0となった場合には帯電防止性能に優劣をつけられなくなる。表面比抵抗が10の10乗Ω程度で0となる場合もあれば、10の9乗Ωでも0とならない場合がある。この理由がよく分かっていなかった。だから帯電防止フィルムの開発において実技テストを欠かすことができなかった。
すなわち市場品質を再現できる科学的手法が20年前に知られていなかったのだ。経験を積んだ技術者であれば、表面比抵抗や誘電緩和、電荷減衰速度その他の帯電防止に関する電気的評価から市場品質の推定ができたようだ。しかし、実技テストの結果と相関する電気パラメーターが見つかれば、実技テストが不要になる。
インピーダンスの評価はそのような狙いで始めた。最初からパーコレーション転移との関係を調べるために開発したのではない。しかし、インピーダンスが増加すると灰付着距離が短くなる現象に若い人が疑問を持ち質問にきた。インピーダンスは交流の抵抗なのに、なぜ抵抗が上昇すると帯電防止性能が向上することになるのか、という疑問である。
ちょうど福井大学客員教授のお話を頂けたときなので、A先生と共同で帯電防止性能とインピーダンスとの関係について研究を始めた。(続く)
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
絶縁体フィルムに帯電防止層を塗布して、そのインピーダンスの周波数分散を測定すると低周波数領域で異常分散を生じる。面白いのは同じ表面比抵抗の塗膜でもこの領域における分散の様子が異なることだ。
イオン導電性高分子で帯電防止層を形成した場合と電子伝導性微粒子を薄膜に分散して設計した場合でこのような差が生じる。さらに両者の表面比抵抗が一致しても帯電防止性能に違いが生じる。表面比抵抗が10の8乗Ωレベルになるとその差は小さくなるが、10の9乗Ω以上の高抵抗領域では、表面比抵抗と低周波数領域におけるインピーダンスの値の差が大きくなる。
すなわち表面比抵抗が同じ値でも、100Hz以下のインピーダンスの値が大きい帯電防止層が高い帯電防止性能を示す、という現象が生じる。例えば実技テストであるタバコの灰付着テストを行うとタバコの灰の付着距離に差が生じる。
インピーダンスは交流で測定される抵抗というイメージを持っているとこの現象に悩むことになる。100Hz以下のインピーダンスの値とタバコの灰が付着し始める距離との関係を調べると高い相関が認められる。4種類の帯電防止化合物を用いて様々な表面比抵抗の帯電防止層を塗布したフィルムを製作し、その相関係数を調べたら、ほぼ1となった。しかし、表面比抵抗については0.6であった。(続く)
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
導電性微粒子と絶縁体バインダーで生じるパーコレーション転移の観察あるいは評価には体積固有抵抗や表面比抵抗が直流で測定される。ところがこの時観察されるパーコレーション転移の閾値はシャープに現れない。原因は、微粒子間の接触抵抗その他の要因をうまく計測できていないためである。
閾値を見積もりたいときに、交流で測定されるインピーダンスを用いると良い。それも100Hz以下の領域の値である。50-60Hzあたりはノイズが乗りやすいので避けた方が良いが、この低周波数領域のインピーダンスを計測すると閾値を直流の場合よりも見積もりやすい。
交流では、材料のコンデンサー成分を計測可能で閾値近辺の変化を観察しやすいが、直流では抵抗成分のみしか計測できないので導電性微粒子間の距離の変化を検出できないためこのような違いとなる。
実際に抵抗成分と容量成分のモデルを組み立て、抵抗成分が増加するコンピューター実験を行うとこのあたりの変化をシミュレートできる。すなわち、このようなモデルで低周波数領域から高周波数領域までインピーダンスの周波数分散を求めると現実の材料のようなインピーダンスが周波数に依存したグラフが得られる。
そして抵抗成分を小さくしてゆくと低周波数領域で大きな異常分散が生じる。このシミュレーション結果から導電性が向上すると低周波数領域におけるインピーダンスが増加する理由を理解できる
インピーダンスは交流で測定される抵抗である。ゆえに導電性が向上すると大きくなる、という現象は、驚くべきことである。よく考えれば科学的に説明がつく現象であるが教科書で学んだ知識のために現象に遭遇したときに最初はびっくりする。
このような現象は特許ネタにもなる。いくつかこのような現象を用いて特許を書いたがその幾つかが容易に成立したのには驚いた。異義申し立てが無かったのである。フィルムに帯電防止層を形成している場合にこの特許に皆ひっかかっているはずである。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
昨日書いたようにパーコレーション転移は、処方とプロセスに大きく影響を受ける。これら以外の因子として粒子の大きさや、分子の形状なども重要な因子である。パーコレーション転移の因子については、実験を行っていると幾つか見えてくるが、見えない因子もある。
しかし、シミュレーションでパーコレーションという現象を抑えておけば、見えない因子の存在に気づくことができる。材料系でパーコレーション転移を扱った論文を読むときに注意しなくてはいけないのは、その論文のテーマが主要因のごとく書かれている場合がある。もともと科学論文は、一つの真理を明らかにすることを目的にしているので、そのような書き方になることを読むときに考慮すべきである。
ところが昨日簡単に紹介したように二元系のパーコレーション転移でも複数の因子が複雑に絡み合っている。昨日の例で、ラテックスのTgが80℃以上という前提を置いたのは、塗布乾燥過程でコロイド粒子が変化しない、という条件設定である。このような条件を設定しても他の因子の影響をうけてパーコレーション転移はシミュレーションと異なる結果になる。
現象に合わせてモデルを組みシミュレーションを行っても合わないことがある。うまくシミュレーション結果と合致した場合には論文を書くことが可能になる。昨日の例では、酸化スズゾル粒子がうまくネットワークを作っているTEM写真を撮ることができた。すなわちラテックスのまわりに酸化スズゾル粒子が凝集した、きれいな網目の写真をとることができた。
また、塗布乾燥条件を工夫し酸化スズゾルが表面に偏析した単膜を作ることにも成功した。面白いことに、酸化スズゾルの添加量が同じ時にネットワーク状態でも表面に偏析した場合にも同一の表面比抵抗になったことだ。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
酸化スズゾルとラテックスを用いたパーコレーション転移の実験は、パーコレーション転移の制御にケミカル因子とプロセス因子がどのように関係するのか整理するのに便利である。
ラテックスは、数10nmから数100nm、酸化スズゾルは1nm前後の一次粒子が金魚のウンコのようにつながった粒子で、どちらも一定の大きさを持ったコロイドである。またラテックスのTgが80℃以上の高分子ラテックスであれば、乾燥過程で両者の粒子が壊れることがない。
ラテックスに酸化スズゾルを凝集しないように添加してよく撹拌する。この手順だけでもパーコレーション転移の制御因子が幾つか含まれている。例えばラテックスのpHや溶液の温度制御などの因子でパーコレーション転移は影響をうける。何も制御しないでこの作業を行った場合に、沈殿や凝集といった現象が起きる場合もあるが、詳細はコンサルティング内容になるので省略する。
実は二種以上のコロイド溶液を安定に分散する技術は難度の高い技術である。運良く沈殿が生じていないように見えても、混合時に小さな凝集体ができたりしている。目視で見えない凝集体をどのように観察するのかも容易ではないがこのあたりも含め、研究を行いパーコレーション転移とは異なる分野で写真学会から賞を頂いた。
この手順において幸運にも沈殿や凝集がまったく発生せず均一に安定に分散した二元系のコロイド溶液が得られたところから話を続ける。ワイヤーバーを使用して、表面処理されたPETやTACなどのフィルムにこのコロイド溶液を塗布する。この段階でもパーコレーション転移は影響を受ける。
塗布後の乾燥条件もパーコレーション転移に影響を与える因子だ。乾燥後の熱処理でもパーコレーション転移は影響を受け、冷却過程を得て帯電防止薄膜となるのか単なる微粒子分散薄膜になるのかは処方次第である。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
バインダー高分子と導電性微粒子の二元系シミュレーターでも分散パラメーターを導入すると実際に生じるパーコレーション転移の現象に近づけることができる。現実系との関係が希薄なパラメーターを導入して行うシミュレーションにどのような意味があるのか、という疑問がわくかもしれない。
パーコレーション転移は微粒子のクラスターのつながり具合で物性が大きく影響を受ける現象である。クラスターの構造と現象との関係を知るだけでも大きな意味がある。例えば一次粒子の凝集体が分散して生じるパーコレーション転移を考えてみる。
凝集体が均一の場合と不均一の場合の二通りが考えられ、それぞれ特徴あるパーコレーション転移が生じる。詳細はコンサルティング内容となるのだが、この結果が分かるだけでも材料設計に有用な情報となる。
写真会社で製品化された技術の特許がすべて公開されているので詳細は特許をご覧頂きたいが、酸化スズゾルを用いたときに生じるパーコレーション転移について無知であったためにおかしな事が起きていた。
小西六出願の特公昭35-6616は、透明導電体を写真フィルムの帯電防止材として活用した世界で初めての大変重要な特許だが、この出願後ライバルの写真会社からアンチモンドープの酸化スズを用いた発明が20世紀末まで大量に出願されている。
1991年に転職した会社では、酸化スズの技術はライバル会社の技術と信じている人ばかりであった。そしてライバル会社の特許に書かれているように酸化スズゾルには導電性が無いために帯電防止材として使用できない、という伝説ができていた。
ゴム会社でセラミックスの研究開発をしてきたおかげで、セラミックス粒子に関する心眼があったので、伝説に疑問を持ち特許を整理してみた。そして古いライバル会社の特許から特公昭35-6616の存在を知った。またその頃の特許にはゆず肌とか粒子の凝集とか分散に関わる用語が多く、パーコレーション転移の問題で苦しんでいることが伺われた。
古いライバル会社の特許に書かれた比較例の実験結果と特公昭35-6616の実施例の結果との違いをシミュレーションで考察するためにプログラムを組んでみたところ、酸化スズゾルに導電性があるという結果を出せた。
すなわちライバル会社の特許の思想は、酸化スズゾルに導電性が無いためにアンチモンドープの酸化スズが好ましい、という構成であったが、それはパーコレーション転移という現象を隠して特許を成立させるための方便だったのだ。
パーコレーション転移については古くから数学者により議論されていたので、パーコレーション転移をよりどころに容易性でいくつかの特許の成立を防ぐこともできた、と思われる。技術が無いために実験で現象の再現を難しい時にはコンピューターシミュレーションが極めて有効である。知財戦略担当者は参考にして欲しい。。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 電気/電子材料 高分子
pagetop
導電性粒子を高分子バインダーに分散して生じる現象について考えようとすると、とたんに難しくなる。例えば導電性粒子がカーボンでバインダーがPPSの場合を考えてみる。PPSはカーボンをカミコミにくい樹脂として知られている。PPSの分子構造からはカーボンとの濡れが良さそうなイメージを受けるがベテランに尋ねるとカーボンとの相性が良くない樹脂、という。
カミコミの悪い樹脂にカーボンを分散するには分散剤を添加する、という技術手段がとられる。バインダーと粒子という二元系の問題が三元系の問題になってゆく。このような状態になってくると、コンピューターの中のパーコレーションのように科学的な確率で議論できる明確な問題ではなくなってくる。
バインダーである高分子と、添加剤、カーボンの三元系でそれぞれの相互作用を考慮してシミュレーションを行う、というアイデアが浮かぶが、経験からそれぞれの相互作用を考慮しただけでは説明できない現象が思い浮かぶ。
例えば導電性微粒子を分散したフィルムを押し出したときに表面と裏面でカーボンの分散状態が異なる現象が起きる。プロセス因子が絡んでいるのである。溶融状態の対流現象や冷却過程における熱伝導などを考慮しても実際のプロセスは非平衡の場合が多く、現象の数学的扱いが困難になる。
科学的なシミュレーションが困難でも、フィルム成形やベルト成形などの押出成形やゴムの加硫、射出成形、塗布などのフィルムの表面処理等微粒子分散系について多くの成形加工プロセスを経験すると現象を頭の中に再現することが可能になってくる。E.S.ファーガソンの言葉を借りると心眼で見えるようになってくる。
不思議なことだが、この心眼が働くようになるとコンピューターシミュレーションを活用してアイデアを導き出す事が可能になる。すなわち二元系のシミュレーターに心眼で見えた分散を再現できるようにプログラムを組み、コンピューター実験を行うのである。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop
1991年10月1日にゴム会社から写真会社へ転職した。前日までゴム会社に勤務していたのでこの月は給与明細書が2通ある。年金も両方の会社から支払われている。高純度SiCの事業を諦め趣味でその研究を続けながら、新たに高分子科学の勉強を始めた。たまたま最初に東工大住田教授の論文を読んだところ、シミュレーションプログラムを趣味で作成していたパーコレーションの話が書かれていた。
転職するきっかけとなったERFでは、粒子がクラスターを作り、そのクラスターの性質で機能が制御されるところはパーコレンションそのもの。30年前にプログラミング言語Cに興味を持ち、LatticeCという処理系を使ってプログラミングの勉強をしていた。勉強を進めるため、パーコレーション転移のシミュレーター開発を趣味で日曜日に自宅で楽しんでいた。
転職後帯電防止技術を担当することになり、その技術にパーコレーション転移が関係している、と直感的にひらめいた。高分子の専門家でないことが幸いした。作りかけていたプログラムを早く完成させるために会社でもプログラミングを始めた。管理職として転職したので数ヶ月は自由な時間を取ることができた。
シミュレーターが完成後、帯電防止層の導電性のシミュレーションに応用したところ現象をうまく表現できた。パーコレーション転移をコンピューターの中で再現するのは簡単である。導電性粒子間に相互作用が働かないときには確率過程で生じる現象だからである。ゆえにこの条件でパーコレーション転移がどのような挙動をとるのか科学的にコンピュータを使用して調べることができる。
パーコレーションの理論についても40年以上前に数学者についてボンド問題とサイト問題として議論されn次元のパーコレーションまで解かれている。すなわちその現象が科学的にほとんど解明され、スタウファーによる優れた教科書も発売されている。しかしこれはあくまで導電性粒子間に相互作用が無い、という前提である。
現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。
PRセミナーについてはこちら【無料】
本セミナーについてはこちら【有料】
カテゴリー : 一般 連載 電気/電子材料 高分子
pagetop