活動報告

新着記事

カテゴリー

キーワード検索

2014.01/23 高純度SiC(6)

シリカ還元法の反応速度論を研究するには、1600℃以上の高温度で恒温測定が可能な熱重量天秤が必要になる。1600℃から2000℃の分析装置を設計するときに困ったのは部品の材料である。この高温度に曝される材料に酸化物を用いることはできない。理由は酸素の拡散が生じ反応に影響を与えるためである。

 

カーボンが最も安価な材料で加工しやすいが強度が不足する。試料セルだけ加熱でき、周囲の部品が1000℃未満であれば、石英やアルミナを周囲の部品に使用可能である。なんやかんやと30年以上前に真空理工(株)の担当者と議論し、YAGレーザーで加熱する方式を考案した。

 

すなわち光熱変換して加熱するのである。電気ヒーターとの違いは、電気ヒーターでは、電極を通じて熱が伝わるので周辺の設計が難しくなるが、レーザー加熱ならば高温度になる領域を試料系だけにできる。実際に組み立てて実験を行うと熱量が不足し温度が1500℃まで上がらない。

 

そこで赤外線イメージ炉との組み合わせで加熱する方式を考案した。赤外線イメージ炉で1000℃前後まで雰囲気を加熱しておき、試料セル近傍だけを1秒以内に2000℃まで昇温することに成功した。恒温測定を行うには十分なスピードである。

 

完成した熱天秤は、汎用の熱天秤の3倍の大きさになった。レーザー発信器や安全なエリアを確保するために装置が大きくなった。しかし、苦労した甲斐があり、実験データは狙い通りの結果が得られ、前駆体の品質評価に使用可能である。当時室温から2000℃まで加熱重量減少を計測可能な装置がなかったので特許出願まで行った。

 

この熱重量天秤を用いたSiCの反応速度解析では予期せぬ実験結果も得られた。すなわち前駆体の高次構造が異なると反応機構が変化する。SiOが関与する2段階反応はともかくもアブラミの式で整理できない反応も観察された。

 

詳細は省略するが、前駆体が均一にできていれば、均一素反応で反応が進行するが、前駆体が不均一の時に2種以上の反応機構が存在することも分かってきた。この装置を用いた反応速度論の論文を10年後発表したが、この論文についても苦い思い出がある。論文を見て頂けば分かる。

 

 

カテゴリー : 一般 連載 電気/電子材料

pagetop

2014.01/22 高純度SiC(5)

フェノール樹脂とポリエチルシリケートを用いた高純度SiCの前駆体合成法は、第三者から見ると簡単に見える。しかし、ノウハウの塊で同じような反応物ができても良好な前駆体が合成されたわけではない。それでも1600℃以上で熱処理すれば高純度SiCとなり、問題が無いように見える。しかし、良好な前駆体を用いると粒度や結晶化度まで揃った高純度SiC粉末になる。

 

この技術を20年前学位論文にまとめたが、前駆体のノウハウについて記載していない。良好な前駆体ができたところから論文は始まっている。良好な前駆体を用いると均一素反応の取り扱いができ、SiC化の反応解析をできるのである。すなわち良好な前駆体とは、フェノール樹脂とポリエチルシリケートが分子レベルで均一に合成され、1000℃で熱処理を行ったときには、シリカとカーボンが分子レベルで化学量論的に均一に混合された状態を作り出す前駆体である。

 

この前駆体ができるまで、シリカ還元法によるSiC化の反応機構ではSiOの関与が示されていたが、良好な前駆体ではSiOを経由せず、直接SiC化まで進行することが解明された。すなわち、SiCの結晶成長はシリカを核として生じる。そしてSiC化の反応は拡散律速過程で進み、反応しながら結晶成長が進む。これはレーリー法でSiCウェハーを製造するときと同様の機構である。昇華法で結晶成長させるときには核がシリカと異なるだけである。

 

この研究成果を利用すると前駆体の品質管理が可能となる。すなわち良好な前駆体の場合にはSiC化の反応がアブラミの式で示される重量減少のプロファイルを示すが、うまく合成されなかった前駆体の場合には、従来のシリカ還元法の反応機構で反応が進行する重量減少を示す。

 

不良品ではどこが問題になるのか。それは不良品の状態によるが、1.副生成物としてウィスカーが生成、2.粒度分布が不均一、3.不純物酸素が残るなどの問題がある。このなかで3は、SiCウェハーの原料として使用するときに問題となる。

 

すでに基本特許の権利が無くなった技術であるが、多くのノウハウのためこの技術を実施している企業は少ない。特許情報によると某セメント会社はアルコール溶媒を用いて前駆体合成を行っているようだが、無溶媒で行う技術を開発できなかった可能性がある。

 

溶媒を使用すると経済性が悪くなる。本前駆体の原料価格は量産レベルで驚くべき低価格となる。ポリエチルシリケートは高純度であればゴミのシリケートでよく、フェノール樹脂もその原料は100円以下である。SiCウェハーの原料となる高純度SiCを、原料調達手段と合成ノウハウさえあれば、驚くべき低価格で合成できる。

カテゴリー : 一般 連載 電気/電子材料

pagetop

2014.01/21 高純度SiC(4)

SP値あるいはフローリー・ハギンズのχは、二種の高分子の混合状態を予測するときに用いられるが、混合しようとする系で反応を伴うときには、これらの理論は当てにならない。リアクティブブレンドでもこれらのパラメータは重要だ、と言われるが、重要視しすぎるとアイデアを否定するパラメーターとなる。これらのパラメーターを扱う時には少し経験が必要である。

 

液状のフェノール樹脂にSiOユニットを含む様々な化合物を分散しながら、フェノール樹脂が固まるまでの変化を観察した。同じような大きさのχなのに樹脂の中のドメインサイズが様々に変化する。それが目視で分かる程度の変化である。シリカのドメインサイズの大きいフェノール樹脂の中には空気中で燃え続ける組成も存在した。

 

ミクロンオーダーのシリカ粒子の分散ではフェノール樹脂の難燃性を改善できないことが分かっていたが、すべて空気中で自己消火性を示した。空気中で燃え続けるフェノール樹脂は、廃棄物処理の実験で初めての体験である。シリカの分散状態で難燃性が大きく変化する現象を観察して、これをSiC合成の前駆体に用いることとその反応機構を解析すると前駆体の品質管理を容易にできる、という2つのアイデアが同時に浮かんだ。

 

開発テーマが終了し、不要となった材料の処理を行いながら面白いアイデアが浮かんだので処分に手間をかけて良かった。また、フェノール樹脂とポリエチルシリケートの混合は、うまくゆかなかった経験があり諦めていたが、放置しても5時間程度は相分離しない液体が得られたり、透明のまま固化した組み合わせが得られたり、予想以上の実験成果がでた。

 

再現性の問題や、材料の同定など行っていないので研究発表できるレベルの成果ではないが、フェノール樹脂と珪素成分を含む材料との混合について概略の傾向を把握する事ができた。しかし、概略の傾向であって、実験結果を統一的に説明できる成果では無い複雑な点が多い。おそらくその目的のために実験計画を組み実験を行っても見落とす可能性が高い。

 

この廃棄物処理の実験の半年後、同様の実験を行うことになるのだが、この日の実験の再現性の無さに悩まされることになる。すなわち同一条件でフェノール樹脂とポリエチルシリケートを混合しても相分離し、シリカが析出したのだ。

カテゴリー : 未分類 連載 電気/電子材料

pagetop

2014.01/20 高純度SiC(3)

高分子に無機の成分をナノ分散すると高分子の難燃性能を向上することができる。ホウ酸エステルとリン酸エステルをポリウレタンに分散し合成された軟質ポリウレタンフォームは、燃焼させると燃焼面でガラスが生成し火が消える。

 

ホウ酸もリン酸も難燃剤として知られていたので、難燃性の無いシリカを使って同様の難燃化技術ができないか検討していた。たまたまフェノール樹脂発泡体で天井材を開発する、というテーマを担当し、フェノール樹脂をポリシリケートで変性する技術を検討した。

 

ケイ酸ソーダから抽出したケイ酸ポリマーをフェノール樹脂に均一分散し、それを発泡させたところ極めて防火性の高いフェノール樹脂発泡体ができた。しかしケイ酸ソーダの抽出にジオキサンとTHFの混合溶媒を使用するのでコストと環境問題が実用化の障害となった。

 

シリカのドメインがどのくらいのサイズであると難燃性の機能を発揮するのか調べたところ、幸いなことにエアロゾルレベルでも十分な難燃性能が得られた。ただし特殊な分散技術が必要でプロセス開発が重要な技術開発テーマとなった。

 

この技術は実用化されシリカ変性フェノール樹脂天井材は某建築会社に納入されたが、5円/m2のコストダウンを議論し、開発したにもかかわらず搭載できなかった技術があり、本欄では書きにくい後味の悪いテーマであった。

 

もともと腐ることは性分に合わないので仕事を面白くしたい、と考え、シリカ変性フェノール樹脂技術についていろいろと実験を行った。成果を後工程に移管し半年後には無機材質研究所への留学が決まっている、という状況だったので、実験室の後片付けと報告書を書く程度の仕事が半年間の業務という状況であった。

 

廃棄処理しなければいけない様々なメーカーのフェノール樹脂を種々の方法でシリカ変性し「ゴミ」を製造した。当時液体の可燃物を廃棄するにはお金がかかったが、樹脂であれば一般ゴミとして廃棄できたので、液状のフェノール樹脂をひたすら固体のゴミに変性した。

 

ただその変性方法として様々なケイ酸ユニットを持つポリマーと混合する方法を用いて、その変化を調べながら捨てた。廃棄物処理というつまらない仕事が楽しく面白い仕事に変わった。

カテゴリー : 一般 連載 電気/電子材料

pagetop

2014.01/19 高純度SiC(2)

板東英二氏が明石家さんま氏の後押しで吉本興業入りをするそうだ。板東英二氏は、7500万円の所得隠し以来、芸能界の仕事が無くなりかなりお金に困窮していたらしい。個人事務所のビルも売却し芸能界復帰の記者会見も行ったが、まったく仕事のオファーは無く75歳の罪人(脱税)に社会は当然の報いとして反応したのかもしれない。

 

もともと悪人のキャラクターで売れていた人ならば世間の反応は少し異なったかもしれないが、プロ野球で成功した善人のおじさんキャラで売っていたのだから、脱税という罪を犯せばファンはそっぽを向くのはあたりまえだ。人気商売とはそういうものだ。もし再度復帰をしたいならば報酬の半分を社会に寄付する、ぐらいのことを言えば仕事はたくさんくるだろう。

 

一方、引退してもよさそうな年齢だが、本人は「働くことが好きだ」と言っているので働き場所を与えるのも社会の役目である。言葉通り、大いに働き以前のように笑いを振りまき社会を明るくして欲しい。

 

ただし、働く、とは、ドラッカーが言っているように「貢献」と「自己実現」が純粋に目標となっていなければならない。「貢献」と「自己実現」を純粋に目標として働けば、必ず社会に成果が出る、とドラッカーは言っている。脱税という反社会的行為を二度とせず、社会に貢献するために働きたい、というのであれば元ファンの一人として声援を送りたい。

 

「貢献」と「自己実現」を純粋に追究したら、ドラッカーが言うように成果がでたのが、ゴム会社で推進された高純度SiCの研究開発である。技術シーズは天井材の開発から生まれたが、半導体の開発は事業基盤の全くない環境で推進することになる。企業にとっては多大な投資が負荷となり、研究開発を推進する担当者にとっては企業への「具体的貢献」が見えない中で働かなくてはならない。

 

30年ほど前、無機材質研究所から戻り、6年間死の谷を歩いて今は他の企業と合併したS社とのJVを立ち上げることになるのだが、経営陣の激励が唯一の「貢献」の証であった。また、学位を取ることを会社が承認してくれたおかげで「自己実現」の目標も明確になった。

 

そのためFDを壊されるという嫌がらせを受けたときに犯人捜しなど行わなければよかった、という反省が生まれた。その結果板東英二氏のように仕事に困ること無く、まったく専門外となる写真会社をヘッドハンティング会社から紹介をうける、というチャンスが訪れた。

 

JVも動き始めたので、新たな「貢献」と「自己実現」の場を求めて写真会社へ転職したのだが、純粋な気持ちで立ち上げた事業は、30年以上経った今でもゴム会社で継続している。元ドラゴンズ、名古屋のヒーロー板東英二さん、社会貢献するという純粋な気持ちで頑張ってください。私腹を肥やすのが「働く」目的ではありません。

 

カテゴリー : 一般 連載 電気/電子材料

pagetop

2014.01/18 高純度SiC(1)

高級オーディオにSiC半導体を採用したアンプが登場した。すでにインバーターやLEDにSiCウェハーは活用されているが、SiC半導体の実用化技術は、この30年間の成果である。

 

SiCは、エジソンの弟子アチソンにより発明された人工材料でカーボランダムとも呼ばれている。エジソンは山っ気のある人物でダイヤモンドの合成研究をアチソンにやらせていた。アチソンは石英製のルツボでカーボンを加熱し、ダイヤモンドに転化しようと努力していた。ある日偶然に硬い結晶ができたのでびっくりして調べてみたらダイヤモンドではなくSiCだった、という。

 

ルツボに用いた石英がカーボンと接触し、1600℃以上の温度で反応してSiCができたのである。現在でもSiCのインゴットを製造する方法としてアチソン法というのがあり、彼の名前が残っている。このアチソン法というのは豪快な方法で、石英とカーボンを混ぜた状態の原料に電気を流し発熱させSiCの反応を行う。このような製造法ゆえにSiCは多結晶体のインゴットとして得られる。

 

このインゴットを粉砕し研磨剤として長い間使われてきた。また他のセラミックスをバインダーとして耐火物セラミックスとする開発も一部で行われてきた。この材料の技術革新が急激に進んだのは、1980年代のセラミックスフィーバーの時で、様々なSiC合成法が開発された。

 

いろいろ開発されたSiC合成法の中でユニークなのが、ゴム会社で開発され日本化学会技術賞を受賞したフェノール樹脂とポリエチルシリケートのポリマーアロイを前駆体に用いるSiC合成法である。この技術シーズは、フェノール樹脂発泡体の難燃性を上げるためにフェノール樹脂にシリカを分子状態で分散できないか、すなわちポリシリケートとフェノール樹脂のポリマーアロイができないか検討していた過程で生まれた。

 

30年前に開発された技術で基本特許は切れたが、最近でも某セメント会社から本合成法にシリカ粉末をまぜ、驚くべき効果が得られたとして特許出願がされている実績のある合成手法である。また某ゴム会社では現在でもこの方法で合成された高純度SiCを用いた事業が継続されている。

 

 

 

カテゴリー : 一般 連載 電気/電子材料

pagetop

2013.12/31 スマートグリッドの世界

2011年3月11日の福島原発の事故以来日本のエネルギーに関する議論が活発に行われている。福島原発の事故処理費用はじめ公にされてこなかった原発の隠れたコストを考慮すると日本で原発は極めてコストの高い発電方法と言わざるをえない。脱原発の小泉発言が問題になっているが、この髙コストの問題を明確に議論すれば、日本で原発を行う大義が無くなる。

 

それでは低コストの発電方法は、となると現在のところ安価な天然ガスを用いた火力発電ということになる。これは従来技術の延長で集中発電方式を考慮したときの結論である。もし分散発電という考え方になってくると、現在のガス供給ラインを用いた各家庭における燃料電池発電が最有力と一部で言われている。

 

今のところ燃料電池の価格も高くこれを各家庭の負担で設置しなければいけないので普及していないが、各家庭で発電された電気の余剰電力を買い取るシステムが結びつけば一気に普及すると思われる。ただこれには法整備の問題があるのでまだ時間がかかるが、分散発電によりインターネットのようにエネルギーのネットワーク化が進んだ社会をスマートグリッド社会という。この小規模分散ネットワーク型システムでは新たなビジネスが誕生する可能性があり、今注目を浴びている。

 

この詳細は来年議論したいが、スマートグリッド社会では燃料電池以外に太陽電池や各家庭で蓄電するための安価な蓄電池など電池技術が不可欠で、「安価な電池」は今目に見えている重要なコンセプトである。レドックスフロー電池は最も安価な電池と言われているが結構場所をとる。鉛蓄電池がその次に位置している。

 

鉛蓄電池は自動車用として長年の間に改良されてリサイクルシステムもできあがっており、分散型発電における安価な期待される電池だが、現在のLi二次電池の技術を応用したNa二次電池の技術が東京理科大から3年前発表された。スマートグリッドの世界では安心安全安価な三安電池が不可欠である。

 

弊社ではスマートグリッド実現に向けすでに調査を開始しており、独自の蓄電池シナリオをすでに技術情報協会の書籍に発表しました。来年も弊社は元気な日本のために頑張りますのでご支援よろしくお願いいたします。良いお年をお迎えください。

 

カテゴリー : 一般 電気/電子材料

pagetop

2013.12/30 未来のコンピュータ

光コンピューターというコンセプトがある。学術書も販売されているので夢物語では無くその分野の研究も行われているのだろう。光ならば7色少なくとも3色使用できるので、電気信号の現在のコンピューターよりも多くの情報を扱えるだけでなくスピードも早くなる。

 

現在の汎用CPUはシリコーンを基板にして何層も積み重ねて製造されている。ガリウムヒソを基板とする速度の速いCPUも開発されている。またSiCを基板としたCPUも登場した。特にSiC製のCPUは耐熱性や熱伝導性の観点で注目されている。CPUではないが、SiC製パワートランジスターは高級ステレオアンプにも使用されているので20年後までには汎用CPUとしてSiCウェハーを用いたコンピューターが登場するであろう。

 

電気信号のCPU材料についてはかなりのシナリオを描ける状態で、それゆえすでにCPUの速度限界も議論され始めている。しかし光コンピューターの材料シナリオは見えていない。また光コンピューターにおいてメモリーをどのように設計するのか、という見通しも十分に得られていない。光コンピューターで演算を行うためにはメモリー機能が不可欠で長時間どのように光を閉じ込めるのか議論されている。

 

未来のコンピューターについて話題を拾ってみると20年後に実用化されているコンピューター技術のおおよその姿は見えてくる。すなわちSiCウェハーの大型化に成功すればSiで問題となる発熱温度の上限が高くなり、今よりも高速駆動可能なコンピューターが登場する。SiCウェハーの大型化技術はほぼ見えてきており20年後の技術として実現可能性が高い夢である。

 

 

 

カテゴリー : 一般 電気/電子材料

pagetop

2013.12/29 未来の材料設計

機能性低分子材料のコンピューターによる材料設計は、40年前コーリーらが逆合成のコンセプトで分子の合成ロジックを完成し、コンピューター上で効率的な合成ルートを評価したことに始まる。そして現代ではパーソナルコンピューターでその機能をシミュレーション可能なレベルまで到達している。

 

また、無機材料も固体物理の進歩によりコンピューターでその機能をシミュレーション可能なレベルに到達している。しかし、高分子については10年ほど前に元東大教授土井先生らのOCTAが完成したが、現在シミュレーターのテスト段階という状況である。

 

テスト段階であるが、例えばSUSHIのように現実系に適用できるシミュレーターもできている。ポリマーアロイの材料設計についてはSUSHIと経験知を併用するとコンピューター上である程度の実験が可能となる。OCTAが機能性低分子材料の設計のように使われるまでまだまだ時間がかかりそうであるが、原因は高分子物理の遅れにある。

 

高分子物理については、元東大教授西先生らのグループが地道に行っている分子1本のレオロジーの研究が重要である。レオロジーについては40年前の状況と現在では大きく変わったにもかかわらず、その変化が産業界に十分認知されていないように思う。

 

昔はあるスケールの大きさで高分子を眺め、計測されたレオロジーデータから高分子物性を議論していたのが、現在は分子一本から観測されるレオロジーデータを考察し高分子物性を議論しようとしている。この実験は気の遠くなるような実験で一つのデータを見る限り遊んでいるようにしか見えない問題がある。

 

しかし、このデータが必要な実務の現場が多数あるはずで、産業界はもっとこの研究に注目し、現場の情報を提供すべきであろう。実務の現場で得られたデータとこの研究が結びついたときに分子1本からメソフェーズ領域、そして目視可能なマクロ領域まで高分子物性の理解が連続的に進む。その結果高分子の材料設計がモノマーから自由に可能となる。

 

このコンセプトをある程度コンピューター上で実現しようとしたのがOCTAのように思われる。ここで「思われる」としたのは門外漢としてOCTAを眺めてきたからである。しかし退職後OCTAを勉強してみると高分子物理の向かうべき方向が示されていると考えるようになった。すなわちコンピューターのプログラムがあたかも高分子物理の哲学のようでもある。細部のプログラムを理解できていないのでオペレーションからの推定になるが、土井先生がOCTAで目指されたのは高分子材料設計における設計図の概念かもしれない。

 

(注)OCTAは名古屋で生まれたので名古屋の市のマーク「丸八」(布団屋ではない)から由来している。

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.12/27 ニコンDfの技術

フジフィルムのデジカメの成功で2年ほど前からクラシック感覚のデジカメが増えてきた。そして今年ニコンDfという画期的デジカメが発売された。どこが画期的かというと、画素数とか感度とかのスペックを宣伝しないカメラである。見て触って買ってください、といわんばかりのカメラ好きを狙った商品だ。

 

さっそく触ってみた。軽い!といってもペンタックス(リコー)の一眼レフカメラよりは重く感じた。実際にはペンタックスK3よりもわずかに軽いのだが、ペンタックスの製品はレンズも軽く作られているのにニコンのレンズは重い。ただ見た目の大きさから推定される重量よりも軽い。特にレンズセットで発売された組み合わせは、フィルムカメラを触っているような錯覚になる。ダイヤルの感触がまたよい。単なるぎざぎざダイヤルではなく昔懐かしい触り心地である。シャッターボタン始めボタン類の触り心地も抜群である。今バックオーダーを抱えているヒット商品だそうだ。

 

雑誌「アサヒカメラ12月号」に掲載された開発者インタビューを読み開発本部長山本氏の発言にしびれた。「構想段階ではしっかりと手を使って書き、イメージを膨らませるという教育をしている」と語っている。今時は3次元CADで図面を描けば、立体物の構想をPC上ででき、そのまま図面に落とせる便利な時代である。それでも構想段階では手を使うように教育をしているとのこと。

 

理由はCADで良いデザインができても実際に組み立ててみるとダイヤルの間隔が極端に狭かったりするそうだ。それで構想段階では手書きで、実際の自分のイメージを平面で確認しながら構想を具体化できるように教育をしている、という。これこそ心眼を大切にする技術者教育である。E.S.ファーガソンも同じような事を「技術者の心眼」に書いていた。

 

ニコンDfを1時間ほど店頭で触れてみたが、これだけ手になじむデジカメは初めてである。学生時代からペンタックスの手触り感が好きで、カメラはペンタックスを使い続けてきたが、このカメラには技術者の気合いを感じた。ただ、今売れに売れているので30万円近くする。センサー類はD4、その他はD610の部品の流用らしくD4よりは値段は安いが、外観にそれなりのお金がかかったカメラなのだろう。

 

高画素のデジカメD800よりも高い。D800と比較するのは無粋なことなのだろう。Dfは比較する対象が無い、それを欲しい人が買う商品である。そしてライカよりもお買い得である。カメラに興味が無い人もお金が余っていたらファッションアイテムとして買っても良いカメラである。価格もスペックとニコンカメラの製品ラインから考えるとビミョーに高い「持ちたくなる価値」を細部まで技術で表現した商品である。

 

 

カテゴリー : 未分類 電気/電子材料

pagetop