活動報告

新着記事

カテゴリー

キーワード検索

2021.12/08 高分子材料の密度(2)

高分子材料の密度ばらつきを甘く見ると痛い目にあう。以前この欄にN社のフィルムカメラ(F100)裏蓋が、防湿庫に保管中壊れた話を紹介している。フィルムカメラの裏蓋はフィルムの感光を防ぐ重要な機能部品である。


また、F100というカメラはハイアマチュア向けの当時N社を代表するカメラの一台だ。価格も安くない。それが、大切に保管中壊れたのだから頭が真っ白になった。購入してから1年以上経過していたので無料修理も効かない、とサービスセンターで言われた。


すでにデジカメD2Hを使用していたのでF100の修理をあきらめて、高分子の破壊と劣化セミナーで技術が無いために品質問題を起こした事例として使うことにした。裏蓋の壊れたフィルムカメラを修理しないで使う方法としてそれ以外思いつかなかった。


一応修理窓口で無償修理が効かないならセミナーの教材として使ってよいか、と尋ねたら、簡単に承諾が得られた。ゆえに当方の高分子の破壊と劣化セミナーでは無残に壊れたF100が最初に登場する。


フィルムカメラの裏蓋は、高級カメラの場合にボタンを押すとカパッと開くタイプが多い。F100も裏蓋にスプリングがついており、ボタンを押し下げると気持ちよくカパッと半開きになる。


長年P社の一眼レフを使ってきたが、カメラ店でF100を触ってみて、その高級感とデジカメの将来を考え、N社に乗り換えようとしてF100でシステムを揃えなおした。50万円を軽く超えたがN社のデジカメと心中するつもりでF100に乗り換えた。


そして、デジカメはD2Hを購入したわけだが、N社に乗り換え3年でF100の裏蓋が壊れ、無償修理もきかない事態に改めてP社のカメラを見直した。システムを一通りそろえても50万円を越えない懐にやさしいカメラである。


結局現在はN社とP社の両方のデジカメを使用している事態になっている。高分子材料と密度についてF100のフックが壊れた話を書こうとすると、品質保証のサービスが受けられなかった話までさかのぼる。理由は、本来は無償修理すべき問題だと今でも思っているからだ。明日その理由を書く。

カテゴリー : 未分類

pagetop

2021.12/05 ペルチェ素子を用いた空調服

扇風機を2台つけただけの空調服が2万円台の価格で販売されている。これだけの価格ならばペルチェ素子を用いたエアコンジャケットの方が快適である。同じ価格帯で供給可能である。


ただ、問題はペルチェ素子をただつけただけでは、エアコンジャケットとならない。そもそもペルチェ素子だけでは体を冷却することはできない。もう一工夫必要である。


弊社ではこのひと工夫に成功し、ペルチェ素子を用いたエアコンジャケットの試作に成功している。ただ残念なことに開発依頼主の本業がコロナ禍のあおりを受けてエアコンジャケットの事業がペンディングとなった。


特許は3件出しており、そのうち重要な1件については弊社から出願し、出願時審査請求を行っている。開発依頼主からは弊社が新たな事業先を探してよいことになっているので、もしエアコンジャケットの事業を希望される方は弊社へお問い合わせいただきたい。


ちなみに扇風機を2台つけただけの空冷服の問題は、外気を体に直接吹き付ける点である。ペルチェ素子を用いたエアコンジャケットでは、外気と体表面とは遮断されて冷却されることになる。さらに冷却しすぎも無く快適である。

カテゴリー : 未分類

pagetop

2021.11/22 高分子材料のツボ(7)

高分子のガラス相について組み紐でできる構造から説明しているが、この組み紐モデルでうまく説明できないのが高分子の結晶である。組み紐が偶然規則正しく並んでいるところが結晶構造といってごまかすことができるが、実際の高分子の結晶は、ラメラと呼ばれる板状の結晶子の集まった球晶である。


これが、プロセス条件により、フィブリル状の結晶として観察されたり、シシカバブ構造の結晶として観察されたりする。結晶性樹脂では、単一組成の樹脂であっても高次構造として、結晶とガラス相、自由体積の3つの構造ができる。


これは重要な知識である。ところが高分子の教科書にこのような説明がないから困る。結晶性樹脂のブリードアウトを考えるときに、この3つの構造が頭に浮かぶかどうかで、出てくるアイデアに影響を受ける。


アイデアというものは、頭の良しあしだけで決まらない。中学校の時に通知表が1か2しかついていないクラスメートがいた。テストがいつも100点満点で10点前後しか取れなかったので仕方がないが、なかなかのアイデアマンだった。


技術家庭科とか美術でその才能は発揮されたのだが、教師はそれを評価できなかった。手先が器用で作品はいつも素晴らしかった。ただ、製作時間が長く、家に持ち帰って完成させていたので親が手伝っていると誤解されていた。


驚くのは、課題が出たときの着手の速さである。着手は早いのだが、仕上げに凝るのでいつも作品提出が遅くなった。しかし、いつも小生は作品の構想をまとめる作業で彼に勝てなかった。子供心にすごい才能だと興味を持っていた。


このような特異な才能に恵まれた人ならば高分子の高次構造モデルなどどうでもよいかもしれないが、凡人はアイデアを出すための下地を整えておかなければ、必要なときにひらめきとしてそれを活用することができない。


凡人が高分子材料技術についてアイデアを出しやすいように、ツボとしてこの欄で書いているが、不満な点は問い合わせていただきたい。

カテゴリー : 未分類

pagetop

2021.11/09 高分子の劣化と寿命予測

表題のセミナーがS&T社の企画で11月18日に開催されます。WEBセミナーの形式で10時30分から16時30分の予定で行います。弊社へ申し込まれますと割引価格となります。


さて、高分子の劣化と寿命予測も科学的に扱うと泥沼に入ってゆく難しい分野だ。金属やセラミックスでは科学的な成果がほぼそのまま実用化されているが、高分子材料では新入社員の研修発表でCTOに厳しく躾けられた経験があり、科学的に技術を作り上げることの難しさが身についている。


学会では高分子の酸化劣化機構の研究が十分に議論されたが、現場で起きているのは酸化劣化だけではない。タイヤならば実車試験を繰り返し寿命予測を行わない限り、正しい予測はできないとされている。


例えばタイヤトレッドゴムの寿命予測では、比較コンパウンドと新規開発コンパウンドを1本のタイヤに用い、それをタクシー会社にお願いして半年ほど使用してもらいデータを集めて予測することが行われている。


ようするにやってみなければわからない世界だ。研究段階では様々な模擬試験法があり、その試験結果で耐久性を見るのだが、その試験内容はノウハウである。


そのような世界を見てきた技術者にとって世の中の教科書はいい加減だと思う。ある10万円前後の本に樹脂とゴムでは耐久性が異なる、と大胆な結論がグラフとともに書かれていた。ここまで書かれると今回のようなセミナーを継続して行い啓蒙活動をしなければいけない使命感が起きてくる。


コロナ禍となって、ナノポリスを辞職し国内のセミナーに力を入れている。昨年末には2時間ほどWEBセミナーの練習として無料セミナーを数回行った。もし何かリクエストがあれば年末に有料でセミナーを企画したい。

カテゴリー : 未分類

pagetop

2021.11/07 高分子の可塑剤とTg

高分子に可塑剤を添加すると、その量に応じてガラス転移点(Tg)は低下する。物性を微調整したおつりとして耐熱性の指標ともなるTgの低下が設計上問題となる時には、添加量の最適化実験がなされたりする。


ゆえに、可塑剤の添加はTgの低下を招くと経験知として体得することになる。可塑剤の添加は、樹脂の流動性の改良や樹脂の機能性向上が主たる目的だが、このTgを下げたくない場合にどうするかが教科書に書かれていない。


例えば流動性が悪く射出成型性に難があるPPSについて、射出成型性を上げるために添加剤が開発提供されているが、これを用いるとTgは2℃以上添加量に応じて下がる。


せっかくの耐熱性が落ちるのであまり使いたくない技術である。6年ほど前に中国ナノポリスにある某企業から相談を受けてTgを劣化させないPPSの流動性改質剤を開発した。


すでに特許が公開されたので種明かしをすると添加剤としてオリゴマーを採用したのである。PH01と名ずけたこの添加剤は、PPSの流動性をあたかもそのTmを5℃前後低下させた以上に改善できる。市販の添加剤よりもMFRは2倍の値となる。


分子設計でオリゴマーに着目した理由を知りたい方は問い合わせていただきたいが、このような着眼点の特許が少ないことに驚いている。オリゴマーの分子量制御が問題となることも多いので、すなわちオリゴマーの設計が難しいために普及していないのかもしれない。


ただ、オリゴマーには高分子添加剤としてあまり知られていないメリットがあり、この研究はアカデミアでも行うべきではないだろうか。デンドリマーの研究とかも下火になってきたので研究時間にゆとりができた先生はチャレンジしていただきたい。

カテゴリー : 未分類

pagetop

2021.10/29 混練技術

高分子混練技術の難しさは、科学の研究で進められている分配混合と分散混合の考え方を用いて実務で遭遇する現象を説明できないためだ。このような問題があっても機密の壁のため問題が表に出ず、その結果研究も進まない、というジレンマがある。


コロナ禍となる前に混練に関する小生の経験知をハンドブックとして上梓したが、その内容は40年以上前ゴム会社へ入社した時に、混練の神様と呼びたくなるような指導社員に指導された知識が中心になっている。


ただし、指導社員はダッシュポットとバネのモデルで混練現象を教えてくださったが、小生はそれを最新のレオロジーで書き直している。


混練に関する最新のレオロジーの知識をどこで入手したのかというと、学会活動である。今でも時間とお金が許せば学会に参加している。もう客員教授もやめており大学の先生ではないが学会で勉強することは継続している。


余談だが学会参加は一般人でも可能なので、時間のある老人は学会へ出かけ目の保養をしてくるとよい。最近の学会のプレゼン資料はカラフルで見ていて楽しい。腹のムシの居所が悪い時には意地悪な質問をして欲求不満の解消をするとよい。


いい加減な発表もあるのでそのような発表をポスターで探し、関連する口頭発表で奇妙なまとめ方に対して質問するとよい。若い研究者のためにもなる。枝葉の質問では研究者に失礼かもしれないが、当方も若い時にどうでもよいような質問をされて発表を台無しにされたことがある。遠慮はいらない。


混練技術に関する発表は、高分子学会でも1-2件ある。ただしこの時当方は質問をしない方針にしている。話がかみ合わなくなることが多いためで、老人ゆえにかみ合わない、と思われても気分が悪いからである。

カテゴリー : 未分類

pagetop

2021.09/29 樹脂の混練

樹脂の混練技術を担当されている方は、樹脂は溶融温度(Tm)付近で混練する、と教えられた人が多い。高分子学会賞に推薦された時に、審査員から混練温度が低いことを指摘されて落選している。


ただしこの時の審査員の理由は、分子の断裂が起きるので相溶が起きてもおかしくない、というものだが、審査員の考え方は間違っている。その時分子量分布の変化も示したが、PPSは測定が難しい材料だ、とデータを懐疑的にみられている。


この結果実績を積み重ねるために中国で活動する決断ができた。どうも日本社会は異なる見解や独創性について冷たい仕打ちをうける様な体験が多い。このような体験から、樹脂の混練をTm近辺で行うのは形式知同等の知識と思われているのではないかと心配して本日書いている。


当方の混練技術はゴム会社の新入社員時代に混練の神様と呼んでも良いような方から3か月間技術伝承されたもので、カオス混合技術もその時に指導され、これを多軸混練機で実現するのが当方の宿題になった。


この宿題は、たまたま退職5年前に豊川へ単身赴任した時に実現できた。製品化まで半年と残された時間のない中で、カオス混合を応用した混練プラントを中古の二軸混練機を購入して立ち上げたのだ。


このプラントで出来上がったPPSコンパウンドは、一流コンパウンダーのコンパウンドと高次構造は全く異なり、半導体ベルトと同一の高次構造になっていた。


そして解決できなかったすべての問題をこのコンパウンドで解決することができた。成形工程の難題には、コンパウンドを改良しない限り解決できないことが知られていない。特に押出成形では形状付与以外の問題は、コンパウンドで解決するのが鉄則、というのはタイヤ工場の職長から教えられた経験知である。


Tm温度付近で混練していないだけでなく、カオス混合を行った結果だが、混練条件が異なると出来上がるコンパウンドの高次構造まで異なってくる、というのは混練の神様から教えられた重要なスキルである。


(注)樹脂をTm温度以上で混練する場合もある。分配混合と分散混合中心の考え方では、混練温度などの条件をどのように決めたらよいのか、このあたりの考え方の重要性は強調されないが、当方の執筆した混練活用ハンドブックは分配混合と分散混合とは異なる視点で混練技術をとらえている。40年ほど前に指導された技術であるが、中国では新技術として受け入れられた。

カテゴリー : 未分類

pagetop

2021.09/26 材料の科学と技術(4)

30年以上前にゴム会社で行われた電気粘性流体の耐久性問題では、組成と機能との関係を科学的に研究し、見事な否定証明を行い、界面活性剤では電気粘性流体の耐久性を改善できない、という結論を導き出している。


界面活性剤ではHLB値がその機能性を表していると教科書に説明されているが、これが研究をミスリードしたのだ。この否定証明の研究が完成し、添加剤が入っていないゴム開発というとんでもないテーマが企画された。


そして、そのテーマが当方に回ってきた。理由は、当時の研究所でゴムの配合研究を一人でできる担当者は当方しかいないからだという。アメリカのタイヤ会社を買収し、社内でリストラが進められた結果、コーポレートの研究所にどろくさいゴム配合の技術者が一人もいなくなっていた。


当方は、研究所へ配属されて3か月間エンジンマウント用防振ゴム配合研究を担当し、当時先端材料だった樹脂補強ゴムを開発している。1年間の予定のテーマを3か月で開発できたのは、サービス残業と過重労働の成果であるが、それができたのは指導社員が神様のごとく優秀な方だったからである。


カオス混合技術をはじめ材料技術すべての考え方をこの指導社員から伝承された。いまから思い出してみても優れた科学者であり、実務も詳しい技術者だった。


この指導社員の言葉で、「やってみなければわからないことは、やってみればよい」は、材料技術者は知っておくべき格言である。電気粘性流体の耐久性問題もこの格言が活かされた。

カテゴリー : 一般 未分類

pagetop

2021.09/22 半導体ベルト

PPS/6ナイロン/カーボンの単純な配合のコンパウンドで半導体ベルトの押出成形を行うと、パーコレーションの制御がコンパウンド段階で完成していなければ、パーコレーションの問題で悩むことになる。


パーコレーションの問題を押出成形技術で解決するのか、コンパウンドの混練技術で解決するのかは、経験知が無いと結論を出せない。30年以上押出成形を行ってきた職人の経験知に従えば、コンパウンド段階で問題解決しておくべきである。


ゴム会社の職長の経験知によれば、高分子のプロセシングにおいて、コンパウンド段階の技術が一番むつかしいのではないか、ということである。すなわち、成形段階で機能を作りこむ考え方では高分子のプロセシング技術のハードルが高くなる、と言われていた。


技術が人間の営みである以上、苦労が少なくなるように開発が進められるべきである。すなわち、成形技術の研究開発では、技術の上で完成したコンパウンドを用いて行わなければ、何を研究開発しているのかわかりにくくなる。


カーボンのような導体微粒子を高分子に分散し、高分子半導体を製造するときに、カーボンクラスターの変化でパーコレーション転移が安定しない。


しかし、カーボンクラスターを弱いふわふわな凝集体として高分子に分散するとパーコレーション転移を安定化できる。混練の形式知に従えば、分散混合を押さえ分配混合を進める、となるが、言葉として記述できてもやり方が分からない。


カーボンクラスターのドメインのパーコレーション転移を制御しておいてから、そのドメインの分散についてパーコレーション転移を設計してやる、というのが答えである。すなわち、パーコレーション転移をWで制御することになる。詳しくは弊社に問い合わせてください。

カテゴリー : 未分類

pagetop

2021.09/21 学びにくい高分子の混練

「高分子の混練り活用ハンドブック」という本をゴムタイムズ社から出版しているが、高分子材料を扱っている人には、ぜひ読んでいただきたい。混練技術に関する教科書が分配混合と分散混合を中心に書かれていることに疑問を感じ、ゴム会社で新入社員時代に3か月間座学で学んだ話を中心にまとめている。


高分子に微粒子を分散する事例では、分配混合と分散混合の説明はわかりやすく、形式知として体系化しやすい。しかし形式知として体系化できても、それを実務で役立てることができなければ意味のない学問である。ここで実学偏重という批判は勘弁してほしい。


学問のための学問も尊いかもしれないが、仮に実際の混練現象を説明できない混練の科学という体系を作り上げたとしても意味のないことを理解してもらえると思う。


今から15年以上前に写真会社でPPSと6ナイロン、カーボンの単純な3種類の配合のコンパウンド工場を設計する必要に迫られたとき、1冊10万円前後の教科書を4冊、自腹を切って購入した。


半月かけて読み終えたが、実務では役に立たない教科書だった。少なくとも目の前にあった問題を40万円ほどかけて購入した本の形式知をつなぎ合わせて解こうとしても、ヒントさえ得られなかったのだ。


ただし、外部のコンパウンドメーカーから購入していたペレットの問題点を理解できた(注)が、それを改良しようとしたときの方向が分配混合と分散混合中心の教科書では見出せない。


仕方がないので、35年前に混練の神様のような指導社員から教えていただいたことを記録した手帳を探し出して、それを読み返してみた。カオス混合のアイデアまで書いてあった。そして問題解決の方向を見出すことができた。ゴムタイムズ社から出版されている本は、その時の手帳をまとめなおしたものである。


(注)電顕写真を見る限り、カーボンの大きな凝集体は見当たらないか、細かい均一な凝集体の分散状態だった。すなわち、形式知から分散混合が進んでいると説明できるが、分配混合はどの程度か評価する方法が不明だった。そこで、いくつかの区画を切ってカーボンの数を数えてみたのだが、それが等しかったので分配混合が進んでいる、と理解した。

ゴム会社の職長から伝授された経験知では、押出成形において成形精度の問題だけに集中しないとモノができない「いってこい」の世界である。すなわち、成形精度以外の問題解決は、コンパウンドで解決するのが鉄則である。この鉄則に従ったときに、コンパウンドをどのように改良するのかという答えを既存の混練の教科書に書かれた形式知から導くことができない。

形式知からは導くことができなかったが、ゴム会社で習った「形式知に裏づけられた経験知」で答えを見出すことができた。既存の混練の形式知が間違っているかどうかは知らないが、それがコンパウンド開発に役立たないことを経験した。

当方が中古の混練機を購入し3か月で作り上げたプロセスで製造されたコンパウンドを既存の押出プロセスへそのまま流したところ、ポリイミドベルトよりも抵抗変動が小さいベルトを押出成形できた。押出プロセスは完成していたのである。コンパウンドが未完成だった。

カテゴリー : 未分類

pagetop