特殊な構造をした半導体微粒子を絶縁オイルに分散すると電気粘性流体(ERF)ができる。1年以上前にこの欄でその開発の様子を書いたが、このテーマを担当するきっかけとなったのは、ERFをゴムに封入して用いたときにゴムの添加物がERF中に抽出されて增粘する、という問題が発生し、その解決方法が見つからなかった時だ。
このような問題は界面科学の問題である、と科学の知識がある方は現象を見てアイデアを思い巡らす。ERFの開発を推進していたメンバーもその様に考えて市販の界面活性剤を科学的に分析しながら增粘を抑える対策として検討を進めた。しかし、增粘を抑える界面活性剤が見つからなかったので、界面活性剤では解決できない、という証明を沿えて、それ以外の対策方法の探索を進めていた。
一人で高純度SiCの開発を続けていた立場では、このようなときにすぐにネコの手として引っ張り出される。そしてじゃれる程度の仕事を手伝うことになる。企業で研究開発を担当された方はこのような立場を理解できるのではないかと思う。じゃれているだけではつまらないので、アンダーグラウンドで独自のアイデア実験を進めたところ3日間で解決策が完成した。
ところがその解決策は、プロジェクト正規メンバーが不可能という結論を出した方法だった。すなわちERFの增粘を抑える界面活性剤が見つかったのだ。それも否定されていた構造に近い材料だった。納期が迫っていた開発だったので一応採用されたが、一部のプロジェクトメンバーから反感を持たれたのは確かである。
その結果ゴム会社を退職することになるのだが、科学的な方法で進める研究開発で陥りやすい否定証明については、イムレラカトシュという哲学者が「方法の擁護」という著書の中で、科学的方法で完璧にできるのは否定証明である、と述べている。
すなわち、できない理由を科学的に証明することは易しいのである。技術開発を科学的に解析しながら進めていて失敗が続くとこの罠に陥る。技術開発では「モノ」を創りださなければいけないのだが、頭の良い人ほどこの罠にはまる。この罠にはまらないような研究開発を進める方法の一つが弊社の研究開発必勝法である。失敗続きで家族に迷惑をかけているが、今夜は必ずおいしいオカラハンバーグを完成させる。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
二軸混練機でスクリューセグメントの設計を行うときに、通常はシミュレーションソフトを用いる。ところが混練の機構さえ把握しておればシミュレーションソフトを用いなくとも山勘でもできる。それぞれのスクリューセグメントの役割さえ分かっていれば、そこそこのレベルまでゆく。
乱暴に聞こえるかもしれないが、次のような実績がある。外部メーカーのコンパウンドを購入して開発を行う方針だったあるテーマで、外部メーカーに頼っていては製品ができないと判断し、テーマの決められた納期3ケ月前に中古機を導入した。その時、混練を行うスクリューセグメントを山勘で決めた。それにもかかわらず、外部の一流コンパウンドメーカーよりも性能の優れたコンパウンドを混練できた。
もう少し具体的に表現すれば、外部のコンパウンドメーカーのコンパウンドでは押出成形で合格品を製造するにはかなりの調整が必要なため歩留まりが30%以下で、ひどいときには製品の電気抵抗の偏差が2桁以上あり、品質を満たした製品を製造できないこともあった。ところが山勘で決めた混練システムで最初に得られた成果は歩留まり70%以上で抵抗偏差は0.2桁というすばらしい値であった。
山勘で二軸混練機のシステムを立ち上げたのだが、最適化はタグチメソッドで行っている。しかし、その時スクリューセグメントを因子に入れていない。但し、回転数と材料の投入量を因子に入れている。内製化であり、コンパウンドの生産量は押出成形のタクトタイムに合わせれば良いので、最初からコンパウンドの生産性を犠牲にする覚悟を決めていた。しかし、幸運なことにタグチメソッドで余裕のある条件が見つかった。幸運と表現したが、二軸混練機の押出量について十分な装置を準備した(注1)ので当たり前なのかもしれない。
このテーマでは外部のコンパウンドメーカーの技術サービスに混練条件の見直しをお願いしても埒があかなかった。スクリューセグメントの設計にはシミュレーション始め高度の技術が必要とかエンプラの難しい材料なので混練り条件を決めるのに1年以上かかり大変だったとかいわれたが、3ケ月でできた事実を彼らはどのように説明するのか。所詮混練技術とはこのような側面を持っているのである。
それは新入社員時代に難しい樹脂補強ゴムの混練を行った経験から学んだ。指導社員から標準試料とその配合処方を手渡され、標準試料と同一物性のゴムを混練できるまで実験を始めるな、と言われた。事前にロール混練の原理や取り扱いについて一通り指導を受けたが、標準試料の混練手順については教えて頂けなかった。
指導社員がバンバリーで混練したマスターバッチがあり、それをロール混練で仕上げるだけの作業で、指導されたときの手順でロール混練して標準試料と同等のゴムを作ればよい、とだけ言われた。当方も初めての経験でありその程度の作業と思っていたら甘かった。
標準試料と同等の物性が得られるまで1週間かかったのだ。それもまわりの諸先輩の指導を受けながら悪戦苦闘して、である。理論派の指導社員が教えてくれたロール混練の原理など役にたたなかった。恐らく指導社員は混練が理論で伝わる技術ではないことを教えたかったのだと思う。諸先輩は「いじめ」だと言っていたが、標準試料の混練の難しさだけでなくロール混練にも流派があること、そしてある時間ロール作業を行って呼吸をするぐらい自然にゴムを扱えなければ良い混練ができない、という悟り(注2)のような世界を実体験し文章に表現できない多くの技術を学んだ。
(注1)中古機だったので選択の余地が無かったのは、やはり幸運かもしれない。ここは幸運なのか経験による成果なのか、読者に判断して頂きたい。
(注2)科学と技術の一番の相違点であろう。職人が身につけていてそれを文章でうまく表現できない技術もある。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
SiCには結晶系の異なるα-SiCとβ-SiCの2種類が有り、α-SiCは積層形態でさらに多数の結晶に分類される。これをポリモルフィズムというが、セラミックスの力学物性を考えるときに立方晶であるβ-SiC以外の結晶ではその異方性が問題となる。
無機材質研究所へ留学したとき、最初に担当した仕事は、6H型SiCの線膨張率に観察される異方性を計測する仕事であった。四軸回折計に取り付けた6H型SiC単結晶にレーザーを直接照射し、昇温しながらX線回折を計測して結晶の座標を決め、線膨張率の異方性をその場観察したのだが、とても企業でできる実験ではない、と思った。
しかし、科学としては異方性の存在とその大きさを実験結果で示す必要があり、その異方性の割合が物性にどの程度影響を与えているのか明らかにするのは重要な仕事である。重要な仕事と分かってはいても何度も失敗をすると、何故この仕事をしなければいけないのか、と当時は考えることがあった。
おそらく自然科学の研究は、先人のこうした悩みや苦労の積み重ねの賜物なのだろう。a軸とc軸の線膨張の温度依存性というたった一つのグラフを作成するために3ケ月を費やした。樹脂補強ゴムの開発では、2ケ月で50以上ものグラフを書いた。そしてその結果3ケ月後には商品化できる配合処方が完成した。
学位論文の1ページにこの時のグラフがあるが、時々眺めては科学と技術について考えるヒントになっている。科学は真実であれば何年経ってもその価値は変わらないが、技術はいつでも新しい技術に置き換えられ、やがて忘れ去られてゆく。
カテゴリー : 電気/電子材料
pagetop
高純度SiC前駆体は、フェノール樹脂とポリエチルシリケートを酸触媒存在下で反応させて均一混合を実現している。有機無機複合材料の合成手法として30年以上前には画期的な方法だった。この30年間に京都大学中條先生や東京理科大阿部先生、郡司先生その他無機高分子研究会に関係されている諸先生方により、様々な有機無機複合材料の新しい合成手法が提案された。
分子レベルでハイブリッドにする方法以外に多段湿式法という超微粒子を均一に混合する手法もセラミックス合成において有機無機ハイブリッドと同様の効果があることが見いだされた。すなわち新しいセラミックス材料を合成するときに分子レベルまで均一に分散していなくてもナノオーダーレベルの超微粒子を用いれば同様の効果が得られるらしいことが分かってきた。
ここで「らしい」と書いたのは、高純度SiCの反応機構解析を行ったときに、前駆体中にエアロゾルのシリカを混合した場合には、気相反応が少し関与することが観察されたからである。しかし、多少反応機構が変化しても生成するSiCの形態に大きな影響は無かったが、シリカ源としてエアロゾルの割合を増やすと、SiC化の条件によってはウィスカーが生成する場合がある。フェノール樹脂とポリエチルシリケートから合成した場合には、どのようなSiC化の条件でもウィスカーは生成しない。
このように前駆体の構造(分子レベルで均一になっているのか、超微粒子で構造を作っているのか)は生成物に多少なりとも影響を与えるが、工業的見地からは経済性が優先される。ナノオーダーの超微粒子でも分子レベルで均一に分散した場合でも生成物に大きな影響が無ければ、経済的に有利な手段が選ばれる。一般に金属アルコキシドの価格は高い。
そこで超微粒子を有機化合物と均一に混合する新しい経済的な手法が意味を持ってくる。写真会社に転職してこのような問題意識も有り、ゾルをミセルに用いたラテックス重合技術というアイデアを煮詰めていた。また、セラミックス合成の前駆体以外の用途として、薄膜にセラミックス超微粒子の持つ機能を付与したい場合にもこの方法は有効である。たまたま転職した写真会社でこの技術を実用化しなければならない状況になった。1991年の話である。
カテゴリー : 電気/電子材料 高分子
pagetop
炭化珪素(SiC)は半導体に分類されるが、高純度SiCは絶縁体である。かつてセラミックスフィーバーの時にはベリリアを助剤にして高熱伝導性のICパッケージも製造された。
SiCは共有結合性が80%以上なので、助剤無しでは焼結しない。SiCを焼結するときには助剤が必要で、その結果できた焼結体は半導体になる。助剤を工夫すると体積固有抵抗を下げることが可能で、導電性をあげてセラミックスヒーターを設計することができる。
セラミックスフィーバーの時に反応焼結SiCで製造されたヒーターが販売されていた。1500℃前後まで空気雰囲気下で使用する電気炉にはこのSiCヒーターが使用されていた。
しかし、このヒーターの純度は低く高純度雰囲気が必要な電気炉には使用できない。そこで高純度のSiCヒーターを開発した。SiCはホットプレスを用いれば、ほとんどの元素に助剤作用を見いだすことができる。高純度SiCの純度を活かした焼結には、高純度Siか高純度Cあるいは高純度のジメチルポリシランを助剤として用いることが可能である。
Cを助剤にして高純度SiCをホットプレスで緻密化する技術は、高純度SiCが開発されたときにその焼結性確認の手段として実現されていた。高純度SiCを合成するときにカーボンが1%前後過剰になるように前駆体を調整すると、カーボンとSiCが均一に混合された状態で高純度SiCが得られ、これはそのままホットプレスで緻密化できる。
さらに合成時にアルミニウムイソプロポキシドを均一分散して得られた粉体は、焼結条件を工夫すれば常圧焼結も可能で、SiCヒ-ターを常圧焼結で製造できた。このAl添加常圧焼結SiCヒーターの面白いところはPTC特性を示したことだ。ただ、その後の研究で中途半端なPTC特性であり、実用性がないことが示された。ゆえに高純度SiCヒーターはフェノール樹脂を助剤に用いてホットプレスで製造されたヒーターだけが実用化されている。この基本特許の権利も消滅した。
カテゴリー : 電気/電子材料
pagetop
ポリアセチレンが発見されるまで、有機半導体の研究は、どこまで導電性が上がるのかが興味の関心だった。「有機半導体」という教科書を購入して間もなくポリアセチレン発見のニュースを聞き、高価な教科書がゴミになった悲しい思い出がある。
ホスファゼン導電体の研究は、プロトン導電体として企画された。大学院の修了式を終えた後、残務整理として10日ほどでまとめた。導電体以外に数種類新規のホスファゼン誘導体を合成して楽しんだ。大学の研究生活が楽しくて上京するまで実験していた。
ポリアセチレンが発見された後だったので、研究の価値はほとんど無かったが、これが電気粘性流体用絶縁オイルの設計やLiイオン電池の電解質用難燃剤へのアイデアにつながってゆく。この経験から研究というものが時代の流れで大きな価値を失ったとしても納得のゆくまでまとめる必要がある、と学んだ。指導してくださった先生に感謝している。
会社を退職して満足な研究環境ではないが、会社で十分にやりきれなかったことについて見直しを進めている。セラミックスから有機高分子まで、タイヤや防振ゴムからSiC半導体や感光体、電子情報機器まで様々な材料や商品の開発を経験した。大学では体験できないことである。企業の研究開発の面白さでもある。
ホスファゼン導電体同様に今では研究開発テーマとして価値の無いものもあるが、少しずつまとめてみると、面白いことにそこから未来が見えてくるのである。これは経験者で無ければ理解できないことかもしれないが、一生懸命開発していたときには気がつかなかった技術の新しい応用方法が見えてくるのである。温故知新という言葉が好きだが不易流行という言葉が合っているのかもしれない。
技術の営みには不易のものがあり、それが新しい技術を生み出す原動力になるのであろう。ホスファゼン導電体を導電体として見ている限りでは、不易はわからない。しかし、PN環の特殊性は不易のものである。その特殊性は時代のニーズの流れの中で新しい発見も加わりいつの時代にも新素材として生まれ変わる原動力になっている。技術も製品化ではそれが具体化された姿しか見えないが、それを概念として眺めなおすと新しい機能を生み出す手段に見えてくる。
本欄ではサラリーマン生活32年間の研究開発生活を中心に書いているが、見えてきた未来について別途HPを立ち上げ未来技術をまとめる企画を検討中。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
TEOSをフェノール樹脂球に含浸させて熱処理を行うと、シリカが炭素中に傾斜組成で分散した球体を製造することができる。熱処理温度を変えることで、中心部分の炭素の抵抗を制御できる。シリカは表面部分に濃度が高く中心にゆくに従い少なくなる傾斜組成をとっている。この分散の仕方は含浸条件を制御することで自由にデザインできる。すなわち表面を高抵抗にして中心部分を導電体にした、帯電しやすく放電しやすいという矛盾した性質を持った粉体を設計できる。
この粉体は電気粘性流体用に開発された材料だが、その技術は昨日書いたC-SiC繊維の技術をそのまま使用している。ゆえにこの粉体を1600℃以上で焼成すれば、表面がSiCの粉体を製造可能である。ところがSiC化まで進行させると、表面の抵抗が10の8乗Ωcm以下まで下がるので電気粘性流体には使用できない。電気粘性流体にこの粉体を利用する場合には、1400℃以上の熱処理を行ってはいけない。
この傾斜組成の粉体(これをAとする)の御利益がどのくらいあるのか電気粘性効果で比較したことがある。フェノール樹脂球を炭化した後TEOSで表面処理し、表面だけにシリカを析出させた粉体(これをBとする)、非晶質シリカとフェノール樹脂をメタノール中で混合後スプレードライして製造した、シリカ分散カーボン(これをCとする)について電気粘性効果を評価したところ、A>C>>Bとなった。
Cの材料でそこそこの性能が発現しびっくりした。当時のプロジェクトで評価していた粉体と同程度の性能が出た。実験結果を基に考察を進めると、Cでも帯電しやすく放電しやすい性質を持っていることがわかった。
二律背反の物性を持った材料を設計するときに、複合材料設計というのは考え方の定石であるが、どのように設計したら良いか、すなわち複合化方法にはどのような方法があるのか可能性のある複合化手段をすべて評価しておく必要がある。この時実際に材料を製造し評価するのが最も良いが、時間とコストの問題がある。その時便利なのがシミュレーションである。どんな場合でも適用できるシミュレーション手法があるのでご興味のある方は問い合わせください。
カテゴリー : 電気/電子材料 高分子
pagetop
今週は3連休になり、今日はその初日。今週は久しぶりに刺激の多い1週間だった。特に電池討論会は面白い発表が幾つかあり、楽しむことができた。その中でもJFEテクノリサーチの発表は、半沢直樹の倍返し以上の面白さであった。
JFEテクノリサーチの発表のどこが面白かったのか。それはLiイオン二次電池の負極材料として注目を集めているシリコン(Si)を扱っていたからではない。ただそれだけならば、AKB48をゲストに迎えた歌番組と同じで大した魅力は無い。AKB48のセンターがその番組で突然卒業発表するという程度の衝撃も越えた面白さである。
Liイオン二次電池でSiを負極に用いた時には、カーボン負極のようなインタカレーションではなく合金化によりLiイオンが安定化する。かつてソニーが「Liイオン二次電池」と「イオン」という言葉をわざわざ用いたのはLi金属を用いていないので安全をアピールするためと言われているが、これは安全で高容量のLi二次電池を設計するときの設計指針でもある。
すなわち、Li二次電池では、Li金属の形態で析出しないように設計することが二次電池の安全につながる、という考え方である。Si負極ではインタカレーションではなく、合金化によりLiを安全な形態にでき、さらに高容量化できるので注目を集めている。ちなみに最も高容量化できる負極はLi金属を用いたときであるが、Na金属やLi金属は水分と接触すると発火するので負極に用いることはできない。
現在のところLi二次電池を高容量化するのにSiが最も安全な負極材料であるが、Liイオンを合金化すると体積膨張が生じ負極がぼろぼろになる。ゆえにLiイオンを安定に合金にできるSi負極材料はそれなりに工夫した設計が重要になる。この材料設計において、技術的に試行錯誤で有望な材料を試験して見つけてゆく方法とJFEテクノリサーチの発表のように科学的に一歩一歩攻めてゆく方法がある。電極材料は後者の方法が良いように思うが解析技術や装置において一企業では難しくアカデミアの仕事と思っていた。
昨今のアカデミアの状況は企業の開発に近いような研究をされている先生が多く、やや残念に思っているが、アカデミアも30年前に比較すると厳しい状況になってきたので仕方がないのかもしれない。しかし、JFEテクノリサーチで行われたような研究はアカデミアから発表があるべき内容と思われる。そのくらい質の高い研究発表であった。
その内容については先日書いたが、LiイオンがSi結晶と合金化するときのメカニズムに関わる研究で、Si結晶の特定の面からLiイオンがSi結晶内に拡散するという内容である。充分な分析データを解析して得られた結論であるが、この結論はSi負極の研究が、Si単結晶を用いる半導体分野の研究や有機合成における有機金属であるSi化合物を用いた合成反応とつながってゆく面白さがある。この面白さはAKB48の突然の解散劇(はまだ行われていないが)よりも面白い。
すなわちある程度は予想されたが、実際に起きた現象は筋書きからずれていた、という面白さである。LiイオンがSi単結晶と合金化する機構については、Si単結晶のエッチングや、Siの種結晶を用いた結晶成長、あるいはSi基板上におけるGaNの結晶成長などを観劇してきた人には筋書きが見えていた。しかし実際に演じられた結果はむしろ有機金属化合物の反応機構までつながる面白さがあったのである。
JFEテクノリサーチの発表は、麻里子様の卒業発表よりも数段おもしろかった。アカデミアではなく企業の研究である点にも注目すべきである。今の日本は産業界がアカデミアに負けないぐらい基礎研究の力をつけているのである。技術が科学を先導する時代なのかもしれない。
カテゴリー : 一般 電気/電子材料
pagetop
昨晩高校の同窓生で東京在住者が毎月集まる東京旭丘会月例会(旧東京愛知一中会)の当番だった。そこでボーイング787の機長を務めた同期の小川良君(今年すでにJALを定年退職)に講演をして頂いた。彼はフジテレビの「矛x盾」で放送された飛行機マニアとJALの対戦にJAL代表として美人の客室乗務員町田さんと一緒に出演したTV映えのする二枚目である。
講演内容は同窓生対象なので表題の話題以外に彼の機長として、あるいはJALの元社員としての興味深い飛行機の話が大半であった。ただ、表題の話題については技術という側面を分かりやすくプレゼンテーションしていたことと、以前本欄で紹介したこともあるのでここで話の一部を取り上げた。
ボーイング787が最新鋭機として他の767や777はじめその他の7シリーズと比較しどこが優れているのか、という話の中でバッテリー不具合対策が紹介された。あくまでも同窓生対象なので、プレゼンテーションでは難解な技術用語は飛び出さず分かりやすい説明であったが、ここでは技術的に翻訳して要約する。
バッテリー事故では新聞でも紹介されたように原因解明には時間がかかり終結までの見通しが不明であった。但し、バッテリーそのものは本欄で紹介したようにGSユアサの技術力で、エラーが起きても火災を引き起こすまでに至らなかった(注1)。
そこでバッテリーに予想される不具合108項目(実際に発生するかどうかは別にして科学的に考えられることすべて)を再度見直し、対策が不十分と改めて判定された80項目(すでに対策が取られていてもリスクがあると思われる項目)すべてに新たに3重の対策を施したという。その一例が写真とともに紹介された。
この話は品質工学のFMEAという手法を3重に行っている、という内容である。このFMEAという手法は、科学の時代でも科学で解明されていない現象を含む技術の品質保証ではメーカー各社どこでも行っている“はず”の手法で、経験が積み重ねられれば品質の信頼度を急激に高めることができる。108項目についても初めてのフライト前に当然行われていた。しかし原因不明の事故が起きた、ということで重要な80項目についてさらに3重に対策を行った、という。一例では過剰品質といえるところまで行っていた(注2)。JALの安全に対する厳しさが伺われる説明であった。
電池というものは、イオンの拡散という現象で科学的に説明ができるが、その耐久性も含め、科学的に完全に説明がつかない現象も多数存在する商品である(高度な技術の商品は皆この問題を抱えている)。本欄で科学と技術を科学技術という曖昧な言葉で集約するのではなく、技術開発でそれぞれの目的が異なる点を重視している一因であるが、科学の成果と思われている商品すべてが実は技術の成果で創られており、その中には現代の科学で解明できない現象が商品に含まれている問題に改めてここで取り上げたい。
技術の成果に科学で解明されていない現象が含まれているかもしれないのでFMEAというヒューマンエラーを防止する対策を行うのである。ただ、ここで注意しなければいけないのはFMEAそのものは科学的視点で行われている、ということだ。すなわちFMEAを行っても科学で理解されない現象が起きればせっかくの科学的論理で導かれた対策をくぐり抜けてエラーが発生する。このようなエラーは科学で理解できないので「経験」という行為を積み重ねる以外に防げないのである。
ゆえに市場でエラーが発生する度にFMEAを繰り返しているのがメーカーの品質管理のやりかただが(注3)、それを一気に3重まで一度に行う、というやりかたは初めて聞いた。だからボーイング787は今無事に飛べるのである。
傾斜のある土地にタンクを並べその最上段に1個だけセンサーをつけて安心して汚染水を垂れ流していた東京電力はJALを見習うべきである。科学の初歩的な学力があれば分かる現象でミスが発生する間抜けな状態(注4)というのはFMEAが行われていないことを意味している。
(注1)飛行機には発電装置が8基あり、これがすべて壊れたときにさらに2基あるバッテリーが使われる、という安全に安全を重ねた多重の対策が成されている。ゆえに新聞で報道された事故で飛行機が墜落することは無いそうだ。
(注2)関連メーカー技術者を含めた企業の横断的プロジェクトで推進された、ということでGSユアサの技術者も加わっていたはずである。
(注3)車のリコールは恥ではなく技術を高める活動の一つである。ゆえにそれを隠蔽するのは罪だけでなく技術開発を放棄している行為である。
(注4)今回の汚染水漏洩は、連通管と同じ原理に設計してセンサーを1個にした、というならば間抜けな対策である。傾斜した連通管で一つだけセンサーをつけるならば傾斜した最も低い位置にある管にセンサーを1個取り付けるのが常識である。傾斜した連通管の最も高い位置に取り付けたのは、「間抜け」か「意図的」なのかどちらかである。もし後者ならば犯罪である。永遠に水を貯めることができるタンクと称して汚染水をこっそり垂れ流すことができるので今回の事件は犯罪の可能性もある。犯罪でなければ東電の技術者は中学生レベルと見なすべきである。
カテゴリー : 一般 学会講習会情報 電気/電子材料
pagetop
第54回電池討論会では、電気自動車やハイブリッド車の話題もあった。環境問題の解決策として電気自動車は取り上げられるが、電気自動車が使用する電気の発電方式が火力発電であると、その普及が必ずしも環境対策にならない場合がある、との指摘があった。これは日本の脱原発の動向とともに考えなければならない問題だろう。以前問題になっていた給電スタンドについては都市圏で電気自動車を使用する限り解消されたとの説明があったので、そろそろ普及期を考慮しての問題提起と思う。
ハイブリッド車は電気自動車普及までのつなぎ、とその登場時から世間で思われているが、産総研の方のこの講演を聴き、少し認識を変える必要を感じた。個人的な話題になるが、おそらくこの2-3年の間に車を買い換えるとしたら人生最後の車になるかもしれないので、車関係の講演を選んで聞きマイカー選択について考えてみた。
ハイブリッド車といえばその登場時トヨタの独壇場であったが、ホンダがその市場に参入すると面白い比較広告がトヨタからPRされた。それは二人乗り自転車の比較広告で、老人と子供の乗った自転車と筋肉もりもりの若者が二人乗った自転車との競争である。大変分かりやすい広告であった。しかしこの公告の甲斐無くホンダのハイブリッド車は市場に歓迎された。
今年になってスバルからXVというSUVのハイブリッドが登場した。スバルはトヨタとの提携関係にあるので、トヨタ方式のハイブリッド車が登場したのかと思ったら、ホンダ方式でモーターが小さいハイブリッド車であった。ただホンダと異なるのはエンジンと直結していないので、モーターだけの走行も可能になっている。
ハイブリッド車に関してはメーカー発表の燃費と実燃費の違いが問題にされており、やや胡散臭い車と思っていたが、スバルはハイブリッド車の魅力としてターボチャージャーのような役割として捉え、燃費向上を考えていない、と新車発表時に説明があった。この潔さに魅力を感じ、試乗してみると、2000ccの排気量であるが、一クラス上の車のような運転感覚である。
プリウスはどちらかと言えば電気自動車的な未来感覚であったが、スバルXVはターボチャージャー付きの車をさらに改良したようなガソリンエンジン車という感覚のハイブリット車である。アクセルを踏み込めばポルシェと同じ水平対向エンジンの気持ちよい加速感である。WRXのような過激さはないが、アクセルに対する加速感の応答が自然である。加速感としてはホンダのCR-Zも面白いハイブリッド車であったが少し気恥ずかしさがあり購入を見合わせたが、XVは大人のハイブリッド車という印象を受けた。問題は車高の高さである。
トヨタの比較広告でハイブリッド車はトヨタというイメージを持っていたが、ホンダやスバルのようにエンジンをモーターでアシストするハイブリッド車という発想も悪くない。ターボチャージャーのような低回転域の非力さが無いので高排気量の車を運転しているような錯覚になる。
プリウスでも実燃費はカタログ値の60%から70%である。ハイブリッド車という技術を燃費改良という視点ではなく、ガソリン車の性能向上という発想で活用したスバルXVは、人生最後に選ぶ車の候補に考えても良いのかもしれない。実燃費もプリウスより1-2割悪いだけである。同じ価格で二クラス上の車という印象を与えるXVの商品価値は高い。少し値段は高いがホンダの話題の車アコードにも試乗してみたい。
カテゴリー : 一般 電気/電子材料
pagetop