活動報告

新着記事

カテゴリー

キーワード検索

2013.05/28 科学と技術(パーコレーション)

絶縁体である高分子に導電性のカーボンを混合してゆくと、添加量の体積分率(v)がある量(vp:閾値)になると、急激に抵抗が下がる現象が生じる。その後はカーボンの添加量に応じて緩やかに抵抗が低下してゆく。これがパーコレーション転移と呼ばれる現象で、電気抵抗だけでなく、弾性率変化などあるマトリックスへ粒子を添加してゆく時の物性変化で観察される。

 

電気抵抗の場合には1000倍以上の物性変化がパーコレーションの閾値で観察されるのでこの現象の研究に電気特性がよく使用される。弾性率でも柔らかい物質に固い物質を添加した場合には下に凸の関数になったりするのでパーコレーションの閾値を確認できるが、電気特性ほどの変化を示さないので閾値の場所がわかりにくくパーコレーションの物性研究に扱いにくい。

 

パーコレーションの科学は古くから数学者の間でボンド問題とサイト問題として議論されており、パーコレーションという言葉の由来はコーヒーのパーコレーターからきている。日本語では浸透理論となる。

 

パーコレーションを科学的に論じるとクラスターのできやすさを議論する確率理論になる。技術的な解決方法にはマトリックスとフィラーの相互作用やフィラーの界面、フィラーの凝集体の制御など切り口は複数になる。絶縁体高分子から半導体材料を製造するときに電気抵抗制御を導電性材料で行うのだが、必要な電気特性に近いフィラーを使用するのが最も無難な材料設計になる。しかし、経済性の問題がでてくる。

 

技術的な解決方法で注意しなくてはいけないのは、パーコレーションの閾値近辺で材料設計をしてはいけないという点である。物性ばらつきが大きくなるからである。たまたま実験室で物性を安定化できても生産で大きくばらつくことがある。あるいは市場で使用中にばらつくこともある。しかしどうしても閾値近辺で材料設計しなければいけないときにどうするのか。

 

電気特性であれば、Wパーコレーションのアイデアを使用できる。例えばカーボンであれば、カーボンの凝集体を分散し、分散体の体積分率が閾値の手前あるいは閾値を過ぎたあたりになるように材料設計を行う。分散体の凝集力を制御すると分散体の抵抗を制御でき、全体の抵抗を安定化できる。このパーコレーション転移制御技術を利用した製品は6年前世の中に製品(MFPの中間転写ベルト)として販売された。

 

技術ではこのような解決方法が存在するが、科学では、まだWパーコレーションの問題が扱われていない。技術が科学を先行している事例である。科学技術という言葉がある。また、科学と技術は車の両輪である、という金言もある。20世紀は科学が著しく進歩しその結果技術革新のスピードが早くなったが、21世紀は技術が科学をリードしているのかもしれない。山中博士のノーベル賞も技術的成果としてヤマナカファクターが見いだされ、科学的に証明された。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/24 難燃性樹脂のリサイクル

LOI21以下の汎用樹脂は燃えやすく、電気製品や自動車部品に用いるときには必要に応じて難燃剤を添加し難燃性樹脂として使用している。難燃性樹脂を混練するときに混練温度の管理は重要である。

 

高分子に含まれる炭素原子と炭素原子、あるいは炭素原子と水素原子との単結合は、280℃以上の高温度になると切断しやすくなる。ポリオレフィン樹脂の熱安定性を熱天秤で確認すると300℃前後まで安定に見えるが、混練時には剪断力も働くので高分子の種類あるいは混練条件によっては280℃以下の温度でも原子間の結合の切断は生じる。また高分子はヒモのような構造なので剪断力を大きくかければ150℃以下でも切断する場合がある。

 

難燃剤の場合にはもっと深刻な問題がある。難燃剤には炭素原子と炭素原子の結合よりも弱い結合が含まれている場合がある。例えばハロゲン原子を含んだ難燃剤の場合には、180℃前後の温度でハロゲン原子が遊離する。ハロゲン原子はラジカルとして発生するので他の物質に再結合する場合もあるが、熱天秤の観察結果では、多くのハロゲン系難燃剤でこの温度近くにおいてハロゲンが遊離する。ある種の難燃剤では150℃以下でも環境条件によってハロゲンが遊離する。

 

樹脂の難燃化機構では樹脂の分解温度近くで分解する難燃剤が理想的と40年以上昔から経験的に知られていた。ただ、熱分解し空気中で効果を発揮する難燃剤の場合には低温度で分解しても効果が発揮されていることが確認されている。ハロゲンと酸化アンチモンの組み合わせ型難燃剤は、空気中でハロゲン化アンチモンを生成し、燃焼中の樹脂表面に滞留して空気の遮蔽効果が発揮され燃焼を止めると言われている。この機構であれば低温度で熱分解してもアンチモンとの反応条件さえ整うと難燃効果を発揮する。しかし難燃剤の開発の歴史を見ると難燃剤の分解温度を高めることは一つの重要な技術課題であった。現在でも280℃以上の温度まで安定な難燃剤は少ない。

 

非ハロゲン系難燃剤は環境問題の関心が高まるとともに重要な研究課題となり、リン酸エステル系難燃剤にも非ハロゲン系の難燃剤が品揃えされるようになった。その中には280℃以上の温度でも安定な難燃剤が存在する。しかしこのような耐熱性の高い難燃剤が使用されている例は少なく多くの場合は、250℃前後から難燃剤は分解する、と考えて対応した方がよい。すなわち混練温度が250℃以上になると難燃剤の分解を心配しなければいけない、と大雑把に考えてよい。ハロゲン系難燃剤の中には150℃前後でも分解する物質があるが、難燃剤メーカーに混練条件を提示した場合にはそのような低温度で分解する難燃剤は供給されない。

 

このように考えると難燃剤を添加した難燃性樹脂の混練は剪断力の効果も考慮すると250℃以下で行うことが望ましい。使用する難燃剤の熱分析データを見て混練条件を考えるべきであるが、そのように行われないケースを見てきた。大手の樹脂メーカーの技術サービスの話を聞くとびっくりするような混練条件の決め方をしている場合もある。熱分析データは熱天秤とDSCの両者を見るべきだが、一度も熱分析データなど見たことが無い、というケースも存在する。そのようなメーカーの樹脂は安くても購入しない方がよい。

 

最初の段階で混練条件が悪ければ、そのリサイクル樹脂についてはどのような温度条件を設定しても難燃剤が熱分解した樹脂となる。しかし難燃剤が樹脂内部で分解していても難燃性能に大きな影響が出ない場合がほとんどである。だから難燃剤の耐熱性に無頓着な樹脂メーカーも存在するのだろう。ただし力学物性や絶縁性に影響が出る問題は深刻である。難燃性樹脂のリサイクルでは樹脂の耐久性に注意する必要がある。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/23 半導体領域の高分子材料

1980年頃に書かれた導電性高分子の教科書は、導電性高分子が夢の材料になっており、最も導電性が良好な高分子材料でも半導体領域の導電性であった。そして導電性高分子にするにはカーボンの添加が不可欠との説明がされていた。白川先生の論文が発表されてしばらくしてからの教科書である。

 

高分子の大半は絶縁体である。経済的に半導体領域の材料へ変性するには、今も昔もカーボンの添加が最も効率的である。しかし、この時パーコレーション転移の制御という材料技術が重要である。試行錯誤で半導体領域の材料を製造することができても安定な生産が難しい。

 

パーコレーション転移の概略説明は以前書いているので、ここでは特許を書くコツを幾つか公開する。ただこの説明も工夫しなければ、ここに書いたとたん、コツは分かったが、もう特許に書けない、ということになりかねない。ゆえに公知の範囲で記載し、特許になりそうなところは、文脈で理解して頂けるような書き方をする。奥歯にモノが挟まったような文章になるが---。

 

1.パーコレーションではクラスターが長くつながる確率が問題となる。この確率を100%にできる、あるいは0%に制御できる技術が特許になる。

 

2.パーコレーション転移で得られる導電性は、マトリックスの電気抵抗と粒子の電気抵抗で決まる。粒子の電気抵抗の制御方法とマトリックスの電気抵抗の制御方法はそれぞれ未知の方法が存在する。

 

3.マトリックスの電気抵抗は、カーボンを分散したときに不純物の影響で変化しているはずで、そこをうまく表現した特許は少ない。(ご相談頂ければ詳細説明いたします。)

 

4.粒子の抵抗は、表面処理や凝集状態で変化する。(ご相談頂ければ詳細説明いたします。)

 

5.高分子中にカーボンを分散する方法は、混練技術になるが、混練手段によりクラスターのでき方が異なる。この定量化は難しい。

 

6.傾斜組成の場合と均一分散の場合では、体積固有抵抗と表面比抵抗の関係が崩れる。インピーダンスも変化する。このあたりの関係について論文は少ない。

 

7.パーコレーションは粒子の分散以外にも界面活性剤の分散や、導電性高分子の添加でも観察される。

 

8.PEGは面白い添加剤である。

カテゴリー : 電気/電子材料 高分子

pagetop

2013.05/23 成功する技術開発(28)

ポリエチルシリケートとフェノール樹脂を酸触媒存在下で混合すると透明な樹脂ができる。リアクティブブレンド技術なので両者の反応速度がうまく合わなければならない。このような実験では、試行錯誤で実際に組み合わせて実験を行った方が早く結果が得られる。実際に12時間程度の実験で安定に合成できる条件が見つかった。

 

このような実験方法はアカデミアの先生に理解されない、と思っていたら、iPS細胞発見の実験では、同様の方法でヤマナカファクターを山中先生は見いだしていた。テレビ放送では、その手順については初公開と言われていたので、研究手法として批判を浴びる、と判断され隠されていたのかもしれない。すなわちどうやって見つけたかは秘密にしておいて、iPS細胞ができることだけを示し、その先の研究を行っていても研究として成立する。見いだした方法を秘密にすることも許される。むしろ秘密にした方が権威が出るし、テレビで発表された方法では、SiCの発表を初めて日本化学会で報告したときのように、批判を浴びたと思われる。ノーベル賞受賞後であれば、一定の評価が得られたので、公開した方が世の中のためになる、と評価される。

 

SiC前駆体の合成に関しては、酸触媒の選択方法について当然質問が出ると思い、酸触媒の検討結果を○△×で示したが、これが批判を浴びた。しかし、批判してはいけないのである。新しい実験事実が出ているのであれば、賞賛すべきところである。学会発表は学問の純粋性を追求する場であると同時に進歩を促す場でもあるのだ。もし新発見の事実があり、その発見が今後の研究に影響を与えるのであれば、まず発見できたことを褒めるべきである。

 

山中博士が遺伝子を細胞に全部放り込んだ実験結果をノーベル賞受賞後まで隠されていた気持ちは、よく理解できた。30年経っても変わっていないのである。学会は研究者が切磋琢磨する場であることは認める。しかし一方で新しい研究を促進する役目もあるのである。学会賞はそのためにあるが、この学会賞も嫌な思い出がいくつかある。

 

新しい発見について、まずその事実を評価する議論がなぜできないのであろうか。これは企業内でも同様のことが起きるのだが、直接利益につながる話であれば、論理の厳密性はそれほどの議論にならない。学会よりも企業内の評価は健全である。ただ、企業それぞれの風土により成果に対する評価が異なる。新しい発見を促進できる風土の企業は業界トップになっている。学会同様にプレゼンテーションを重視する企業は注意した方がよい。技術開発の実験よりも書類作成に多くの時間が割かれていないか?

 

企業では結果をまず大切にする姿勢が重要だと思っている。以前この蘭では、まず「モノ」をつくることの重要性を指摘したが、それはゴム会社で学んだことである。「こんな書類を持ってくるよりも、実際にモノを見せてくれれば研究費を出す」と言われて、徹夜してモノを造って翌朝見せたところ、研究予算を認めてもらえた感動は今でも覚えている。(「簡単にできるならやらない方がよい」という評価をだす会社もあるようだが、それは若い研究者の情熱を理解していない会社だ。)発見プロセスやプレゼンテーションなどよりも、目の前に「モノ」が示されている重要性は、研究開発を32年間行ってきてよく理解できた。

 

学問の進歩も新しい事実が示されて促進される点を重視するならば、学会での議論の視点も変わると思う。まずプロセスありき、あるいはプレゼンがまず重要だ、という学会では将来が心配である。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/22 成功する技術開発(27)

半導体用高純度SiCについて学会発表当時はデータも少なく、学位論文を辛うじてまとめられる程度であった。学位論文には、新前駆体を用いたSiCの反応機構について研究結果をまとめたが、日本化学会での発表が妥当であったか悩むところである。S教授から散々のコメントを頂いたが、おかげで研究に対する理解と当時の研究動向の最前線について情報が得られた。

 

無機高分子研究会に所属し学会活動をしていたが、SiC前駆体高分子に関する情報を当時の文献や学会から得ることができなかった。特許にも、フェノール樹脂とシリカの組み合わせあるいはカーボンとポリエチルシリケートとの組み合わせが公開されたばかりで、フェノール樹脂とポリエチルシリケートとの組み合わせについて存在しなかった。

 

そもそもフェノール樹脂とポリエチルシリケートとはフローリーハギンズ理論から相溶しない組み合わせと思われており、この組み合わせで均一になる、というのは驚くべきことなのである。また当時この組み合わせを実験する、ということはフローリーハギンズ理論をよく理解していない、と評価されたのである。S先生のコメントにもそのような見解が入っていた。S先生は当時RIMで実用化されていたリアクティブブレンド技術をご存じなかった。単なる低分子の重合反応という認識であった。χの大きな高分子の組み合わせでリアクティブブレンドが進行するというのは学術の世界ではタブーのようであった。

 

新前駆体を用いた高純度SiCの合成反応は学術の視点から散々な評価であったが、技術としてはまっとうなコンセプトで開発された。すなわちχが大きく均一安定化が難しいので、リアクティブブレンドで安定化させようと反応触媒に視点を置き開発したのである。学会発表でもそのコンセプトをプレゼンテーションしたが、そもそも均一に混ざらない系で触媒を検討する発想を理解できない、とこき下ろされた。

 

S教授のところからその後ππ相互作用を活用した無機高分子の研究などが公開されてくるのだが、技術が学術よりも先行するとこのような事態になる。しかし、このような状況だから春季年会に企業研究者の出席が少なくなってきた、ということをアカデミアの方は気がついているのであろうか。1970年代石油化学が隆盛を誇っていたとき企業研究者の学会参加が多かった、と聞いている。技術と学術が切磋琢磨した時代の話である。

 

学会で技術発表をしづらい雰囲気ができ、企業も技術の成果を機密扱いにして学会発表を控えるようになった。これでは学会に企業研究者の参加が少なくなって当たり前である。ATPの企画で企業参加が少し増加したが、かつての技術と学術が切磋琢磨した状況とは少し異なっている。新しい技術を生み出すために学術が必要かどうかは、人類の歴史を見れば明らかで、学術など無くとも人間の営みとして技術は生まれるのである。しかし、技術の発展するスピードに学術の果たす重要な役割がある。研究のネタを技術の中に探索するアカデミアの姿勢が必要な理由である。1970年代にはそれがあった、と故石井教授から学んだ記憶がある。

 

研究とは新しいことを見つけ出す活動、と故小竹先生は言われたが、この活動は企業の技術者も楽しんでおり、アカデミアだけに許された活動では無いのである。アカデミアがどうあるべきかを論じる立場では無いので、お願いという表現になるが、開発された技術の中に存在する真理を拾い上げそれを人類資産として明確にする活動をできないでしょうか。もしそのような視点の研究発表が学会に増えれば企業研究者は自然に学会参加するようになる。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/21 成功する技術開発(26)

フェノール樹脂とポリエチルシリケートを均一に混合した前駆体高分子を用いた高純度SiCの技術発表を日本化学会春季年会で初めて行ったときには、反響が大きかった。講演会場は7分という講演時間の発表に対し、廊下まで人があふれんばかりの混雑ぶり。驚いたのは一番前の席は京都大学S教授の研究室の方々が陣取っていた。

 

企業の研究発表としては、異例の早い時期での発表であった。無機材質研究所で行った研究という位置づけだったので外部発表許可が容易に下りたのだ。しかし、前駆体高分子の重合に関してはたった1日の実験データだけである。研究らしい報告と言えば、前駆体の熱分解を超高温熱天秤で評価したデータぐらいである。7分の講演なのでその程度の内容でも充分であったが、発表後が大変だった。

 

S教授から厳しい質問があり、研究未完成の評価を下されたのだ。今から思い返しても企業研究者に対して失礼な質問だったと思う。学会は完成された研究の発表であり、未完成の研究など発表するな、とまで明確には言われなかったが、それに近かった。

 

10年ほど前から日本化学会ではATPというセッションを設けて積極的に企業技術者や研究者の学会参加を促している。企業研究者の参加が減少してきたための対策であるが、研究の香りのしない技術発表でも許されるような年会であれば、企業参加者は減少しない。アカデミアの先生の中に速報的な内容や技術発表を軽視される方がいるのが問題である。(そもそも企業の技術者が参加しなければ損をするような研究発表がいっぱいであれば、技術者の参加が減少することはないと思われるが。)

 

化学会の春季年会は、学生研究者のデビューの場でもあるが、企業技術者の積極的発表も促すようにすれば、企業からの参加者も増えると思われる。技術のPR的内容でもよい、と思う。その中に科学的研究の香りが入っておれば、新しい研究のヒントが生まれる可能性だってある。かつての技術に対する排他的雰囲気が企業技術者の参加減少の一因のようにも思っている。

 

日本化学会春季年会で高純度SiCの発表を行った理由は、無機材質研究所で行った部分を明確にする目的があった。公的研究機関で実施された部分を早い段階でも公開するのは義務だと思ったからである。しかし散々な結果であった。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/20 成功する技術開発(25)

かつて研究開発を行う時に、シーズを基に行うのか、ニーズを基に行うのかという議論が成された時期があった。しかし昨今のiPHONEやiPADを見てニーズを創り出す研究開発が重要、と言う人がいる。

 

シーズとニーズ議論の時にも議論の内容に違和感を感じましたが、このニーズを創り出す研究開発論も「何を今更」という印象を受ける。それぞれ間違ってはいないが、ただその時代に起きた現象を説明しているだけ、との印象を受けるのは何故だろう。

 

企業のこれまでの研究開発でニーズを考えないで行われていた例があるのだろうか。そのスキルに差があるがどこの企業でもマーケティングは行っているはずだ。iPHONEやiPADでもニーズが期待されて開発された商品である。故S.ジョブズ氏にもマーケットを見誤り失敗していた時期があったのは著書を読むとわかる。また、シーズ指向で研究開発を行っていても、将来のニーズを期待しての活動であったはずだ。時代の流れの中で研究開発の効率が悪くなった時にこのような議論が起きているように感じる。

 

iPHONEでは、インテルが事業規模を見誤り、アップル社からチップ開発を依頼されたがコストが合わないという理由で断った話が公開された。ニーズをよく考えて失敗した例になるのだろう。単純にシーズニーズから研究開発の効率をあげる議論はできないように感じる。研究開発のあるべき姿は、企業と市場にイノベーションをもたらし利益を生み出す活動となるが、どのようにイノベーションを起こしたらよいのかは、企業の使命や置かれた環境で変化する。

 

このイノベーションを考える時に価値の共創という市場の動きに注目することは重要である。昔もあったが、モノがあふれてどのような商品開発を行ったらよいかわかりにくくなっている昨今、この価値の共創という市場の動きを活用して研究開発を行うことは重要であり、その方法を解説した本も出版されている。

 

価値の共創ではシーズも重要になってくる。その企業の強みであるシーズから市場で価値の共創が行われ新たな価値が生み出されたならば、他社にまねされにくい独自商品を生み出せるからである。価値の共創過程を見ていると、企業の持っているシーズを新たな視点でカテゴリーを再編成する必要性を感じる。シーズのこのような見直しは、研究開発の効率改善に役立つ手段と思う。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/19 成功する技術開発(24)

高純度SiCの前駆体ポリマーは、ポリエチルシリケートとフェノール樹脂を触媒存在下で均一混合してできる。このような高分子前駆体を用いてセラミックスを製造する、という概念で世界で初めてSiC合成を成功させたのは故東北大教授矢島先生である。1970年中頃にポリジメチルシランを原料にSiC繊維を合成された。しかし、これは1種類の高分子で実現した技術であるが、2種類の高分子を混合してセラミックスを合成するというゴム会社の高純度SiC合成技術は世界初めてであった。

 

そもそもポリエチルシリケートとフェノール樹脂の組み合わせはχが1以上なのでフローリーハギンズ理論では均一混合できない組み合わせである。さらにポリエチルシリケートは無機高分子であり、全く異なる性質の高分子を均一に混合する技術は難易度がかなり高い。科学的に考えていたらアイデアが出てこない組み合わせである。

 

ただし技術は科学と異なるので、科学的にアイデアが出てこなくとも技術的に考えてアイデアを出すことはできる。科学は真理を追究するのが使命だが、技術は機能実現が使命である。科学と技術は使命が異なるので、現象に対する取り組み方も異なる。しかし、学校では教えてくれない困った事情がある。弊社の事業目的の一つに技術の伝承があり、その目的のため研究開発必勝法プログラムを販売している。このプログラムでは技術の視点から問題を考える方法を提供している。

 

技術で現象を捉え考える、とはどのようにするのか。E.S.ファーガソンもその著書のタイトルに使用している「技術屋の心眼」を使うのである。詳細は弊社のプログラムで方法を詳しく説明している。ここでは、SiCを高分子前駆体で合成する方法を考えだしたプロセスを簡単に事例として紹介する。弊社のプログラムを受講すれば誰でもできるようになる簡単な方法である。

 

SiCは、シリカ還元法で合成される。高純度SiCを合成するためには、シリカとカーボンが均一に分子レベルで混合された状態を創り出せばよい。矢島先生のポリジメチルシランはSiとCが分子内に存在するので理想的な状態であるがコストが高い。コストを下げるのは技術屋の仕事である。

 

同一の機能を達成するための一つの方法として、Siを含む安価なポリマーとCを含む安価なポリマーを分子レベルで均一に混合できればよい。前者は当時800円/kgで購入できるポリエチルシリケートがあり、後者は400円/kg以下のフェノール樹脂が存在する。

 

この2種のポリマーの組み合わせはχが1以上なのでフローリーハギンズの理論から相分離する組み合わせとなるが、両者が反応して均一になった状態を心眼で見ることができる。するとできあがったポリマーアロイの中に触媒を見いだすことができる。その触媒はポリエチルシリケートを加水分解する酸触媒であり、またその酸触媒はフェノール樹脂を架橋する触媒でもある。ここまで来れば、ポリエチルシリケートとフェノール樹脂、酸触媒という三元系が高純度SiC前駆体合成に必要であるというアイデアが自然に出てくる。

 

このアイデアを創出する過程を誰でもできるようにしたのが、研究開発必勝法プログラムである。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/18 成功する技術開発(23)

無機材質研究所に留学して、I先生から1週間だけ研究所内の実験設備を使い、ゴム会社でできなかった実験の許可を頂いた。この1週間の実験で、高純度SiCの新しい合成法と高純度SiCを用いた焼結技術を完成するのだが、あえて「完成」と表現したのは、ほぼ現在もその時の条件で行っているからである。触媒はスルホン酸系の触媒からカルボン酸系の触媒に変わっているが、フェノール樹脂を助剤としてホットプレスで焼結体を製造しているところまでほぼ同じである。

 

実は、この1週間の実験で信じられないことが起きていた。今でも、なぜそのようなことが発生したのか解明できていないが。

 

炭化物前駆体を用いたSiC化の実験は、温度条件について1600℃、1700℃、1800℃、1900℃の順に行う予定であった。もしこの順序で実験を行っていたら焼結実験は時間が無くてできなかった。また、この温度条件の中に、微粉の粒度が揃ったSiCが得られる最適条件は存在しなかった。実はSiC化の反応条件は、たった1度の実験で最適条件が見つかったのである。

 

なぜたった1度の実験で最適条件が見つかったのか。それはたまたま電気炉が暴走したため、慌てて全電源を落としたが、1週間という限られた時間を思い出し、マニュアル運転で実験を続けたからである。

 

電気炉はプログラムコントローラーで制御されていた。SiC化の実験についてはその電気炉を管理していたT先生がプログラムをすべて組んで、簡単に使えるように準備してくれた。電気炉の運転は、ただプログラムナンバーを選び、選んだプログラムをRUNさせるだけであった。最初の条件である1600℃30分保持のプログラムをRUNさせたところ、1600℃で保持されず、電気炉は温度上昇をし続けた。当初オーバーシュートと思っていたが、プログラムは正常に動作しているのに、電気炉の温度が1700℃を越えたのである。

 

あわててT先生に電話をしたところ、非常停止ボタンを押すように言われた。そこで慌てて非常停止ボタンを押したが、すでに1800℃前後まで電気炉の温度は上がっていた。T先生が実験室に来られたときに、時間がもったいないから、マニュアルで1600℃に保持しよう、と言うことになり、1600℃まで電気炉の温度が下がったところで再度マニュアル運転により15分1600℃で保持した。翌日電気炉のふたを開けたら無機材質研究所の先生方が驚く結果になっていた。

 

この日の実験の特殊な温度パターンで高純度SiC微粉が得られたのだが、その後無機材質研究所で方針が変わり、この研究を完成させることになった。メーカーの技術者による電気炉の点検が最初に実施されたが、暴走した原因は不明であった。ただ心当たりがあったのは、実験がうまく行くように電気炉の前で直立不動のまま手を合わせ、ひたすらお祈りをしていたことである。

 

SiC化の研究を行い分かったことは、ある温度条件で保持してSiC化を行うよりも一度1800℃まで温度を上げた後、1600℃で保持する条件で効率良くSiC化できることである。すなわち電気炉が暴走したときの温度パターンが最良だったのである。

 

32年間研究開発に携わってきたが、このような不思議な体験はたった一度だけである。真摯な努力の威力を実感した。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.05/16 成功する技術開発(21)

カーボンロッドとSiC単結晶を組み合わせ、それをカーボンが分散したフェノール樹脂でいぐるみ、1000℃で炭化処理後石英ガラスにArガスとともに封入した状態でゴニオヘッドに取り付けた。レーザーでSiC単結晶を加熱しながら四軸回折計で計測を行ったところ、SiCが分解を始める2000℃まで線膨張の様子を観察できた。その結果は、以前この蘭でも紹介したが6HSiCに異方性があることを示すデータが得られた。

 

このデータが得られたとき、無機材質研究所へ留学してからすでに6ケ月経過していた。本社人事部から電話を受け取り、その内容からI先生が1週間の猶予をくださり、高純度SiCが生まれた状況もすでに紹介した。

 

高純度SiCの技術が生まれ、ゴム会社がその技術に2億4千万円の先行投資を行って、半導体事業が住友金属工業とJVとして立ち上がるまで8年という月日が過ぎるのだが、その背景にある経営陣の努力は重要であった。

 

すなわち、研究部門では支持されていなかった企画を、経営陣が育て上げたのである。研究部門では、ファイセラミックスフィーバーの中で、消極的な企画提案しか無かった。積極的に半導体事業を立ち上げるという夢のような提案は、主任研究員レベルでブロックされていた状況だった。8年間のデスバレーを歩いていたときも、さらには転職せざるを得ない事件まで起きたのも、研究開発現場ではいわゆる抵抗勢力の意見の方が強かった。しかし、資金面も含め経営陣の暖かい支援が企画立案時からあったのである。

 

CIを導入し、社名からタイヤを取り除き、「メカトロニクス」と「電池」、「ファインセラミックス」の3分野を明確に示しエレクトロニクスへの進出を全社方針に掲げ、研究所に埋もれようとしていたSiC半導体事業を経営陣は引っ張り上げたのである。

 

研究所内で高純度SiCの事業に対しては否定的であった。8年間周囲から大小の妨害も受けたが、JVとして立ち上がるまで、資金面も含め経営陣から精神的な支えとなるような有形無形の支援を受けた。FDへのいたずらが起きたときに考えたのは、その支援にどのように応えるのか、であった。他社とのJVが立ち上がり、半導体冶工具の開発方向も決まり特許出願も済ませた。おそらく周囲は事業としての成功が見えたのだろうと思った。いろいろな想いが去来し、仕事に未練があっても自分が会社を辞めることが最良の道であると判断した。その結果、事業は30年経った今も続いている。

 

この高純度SiCの事業で最も重要な役割をしたのは経営陣の新規事業を育てようとする意志である。その強い意志は、当時担当者の立場で充分に理解できた。NHKで放映された「日本の先端技術」という録画番組を何度も社内で放映したこともその一例である。宮崎緑のファンになった人もいたようだが、ファインセラミックスフィーバーを伝える意図があったことは明確である。しかし、研究部門は大きく動かなかった。高純度SiCの企画も主任研究員の段階で止まっていた。しかし、その企画は50周年記念論文への応募という形で、経営陣に届けられた。

 

大企業で経営陣と事業部門の意見が分かれた場合、企業統治が機能していない会社では、社長方針どおりに事業部門が動かない場合がある。日本ではそのような会社が多いのではないだろうか。企業統治をどのように機能させるかはこの20年様々な書籍が出版されてきたように経営の重要な課題の一つだろう。サラリーマンという生き方、ワークライフバランスなどの考え方も定着し、企業経営に「経営環境の厳しさ」を持ち込みにくい状況である。しかし、イノベーションというものは本来多大なエネルギーが必要で厳しさが必ずつきまとう。楽しくイノベーションできる方法があれば、それは究極のマネジメントかもしれない。厳しさを和らげる一つの提案が、弊社の「研究開発必勝法プログラム」である。本プログラムの導入により、例えば研究開発部門の長時間労働リスクを取り除くことが可能となる。

カテゴリー : 一般 電気/電子材料 高分子

pagetop