特公昭35-6616に記載された実施例には酸化スズゾルの詳細な製造条件が書かれていない。四塩化スズを加水分解して得られた沈殿をデカンテーションの繰り返しで精製し高純度酸化スズゾルを得る。これをアンモニア水に分散すると、安定な高純度酸化スズのコロイド水溶液ができるのだが、四塩化スズの細かい加水分解条件やデカンテーションの回数等が実施例に記載されていない。
デカンテーションの回数については副成する塩素が残らない条件なので10回以上であることが計算から容易に推定がつく。しかし、加水分解温度について詳しく記載されていないのは不思議に思った。四塩化スズと水の混合物が得られてから煮沸するので、100℃までであれば、四塩化スズの添加温度など気にする必要がないようにも思われる。また四塩化スズを液体の状態で添加するのか、あるいは水和物の固体で添加すのかについてはどちらでも良いような中途半端な書き方である。
ところが実験をやってみて分かったことだが、発明者はこの加水分解温度の重要性に気がついており、わざと丁寧に記載しなかった可能性があると推定した。
タグチメソッドで実験を行うと、この添加温度の因子が感度とSN比に大きく影響する。困ったことに感度を高める条件ではSN比が低下し、SN比の最大をとると、感度は中程度となるのである。
最適条件の選択では、田口玄一先生と喧々諤々の議論を行った。田口先生はあくまでSN比を優先すべきだ、というお立場で、当方はSN比中間で感度もそこそこの良さそうなところを、という立場である。何のために動特性で実験を行ったのか、という雷が落ちる。当方は実験を行った感触から、SN比最大で無くとも生産安定化ができる、と予想した。
ちなみに非晶質酸化スズの体積固有抵抗は、この時の実験結果で500Ωcmから100000Ωcmまで約200倍以上変動している。タグチメソッドの動特性の実験として典型的な結果が得られる実験系である。SN比と感度の議論では、田口先生が正しい判断をされていることは理解できていても、ものすごい結果を目の当たりにした生徒の立場では未練が残る。ただ、田口先生の一言「科学の研究をやっているのではない、技術開発をやっているのだ。」に、すなおに「はい、分かりました」と納得して答えた。偉い先生である。
<明日に続く>
カテゴリー : 一般 電気/電子材料 高分子
pagetop
絶縁体である高分子に導電性のカーボンを混合してゆくと、添加量の体積分率(v)がある量(vp:閾値)になると、急激に抵抗が下がる現象が生じる。その後はカーボンの添加量に応じて緩やかに抵抗が低下してゆく。これがパーコレーション転移と呼ばれる現象で、電気抵抗だけでなく、弾性率変化などあるマトリックスへ粒子を添加してゆく時の物性変化で観察される。
電気抵抗の場合には1000倍以上の物性変化がパーコレーションの閾値で観察されるのでこの現象の研究に電気特性がよく使用される。弾性率でも柔らかい物質に固い物質を添加した場合には下に凸の関数になったりするのでパーコレーションの閾値を確認できるが、電気特性ほどの変化を示さないので閾値の場所がわかりにくくパーコレーションの物性研究に扱いにくい。
パーコレーションの科学は古くから数学者の間でボンド問題とサイト問題として議論されており、パーコレーションという言葉の由来はコーヒーのパーコレーターからきている。日本語では浸透理論となる。
パーコレーションを科学的に論じるとクラスターのできやすさを議論する確率理論になる。技術的な解決方法にはマトリックスとフィラーの相互作用やフィラーの界面、フィラーの凝集体の制御など切り口は複数になる。絶縁体高分子から半導体材料を製造するときに電気抵抗制御を導電性材料で行うのだが、必要な電気特性に近いフィラーを使用するのが最も無難な材料設計になる。しかし、経済性の問題がでてくる。
技術的な解決方法で注意しなくてはいけないのは、パーコレーションの閾値近辺で材料設計をしてはいけないという点である。物性ばらつきが大きくなるからである。たまたま実験室で物性を安定化できても生産で大きくばらつくことがある。あるいは市場で使用中にばらつくこともある。しかしどうしても閾値近辺で材料設計しなければいけないときにどうするのか。
電気特性であれば、Wパーコレーションのアイデアを使用できる。例えばカーボンであれば、カーボンの凝集体を分散し、分散体の体積分率が閾値の手前あるいは閾値を過ぎたあたりになるように材料設計を行う。分散体の凝集力を制御すると分散体の抵抗を制御でき、全体の抵抗を安定化できる。このパーコレーション転移制御技術を利用した製品は6年前世の中に製品(MFPの中間転写ベルト)として販売された。
技術ではこのような解決方法が存在するが、科学では、まだWパーコレーションの問題が扱われていない。技術が科学を先行している事例である。科学技術という言葉がある。また、科学と技術は車の両輪である、という金言もある。20世紀は科学が著しく進歩しその結果技術革新のスピードが早くなったが、21世紀は技術が科学をリードしているのかもしれない。山中博士のノーベル賞も技術的成果としてヤマナカファクターが見いだされ、科学的に証明された。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
高分子の難燃化について科学として取り組もうとする時に一つの大きな壁が存在する。燃焼という現象をどのようにモデル化するのか、という壁である。「燃焼は物質の酸化反応が激しくなった現象」と、よく教科書に書かれているが、実際の燃焼を観察すると単純に「酸化反応が激しくなった」と一言で表現できない様々な現象が起きていることに気がつく。例えば「燃焼とは酸化反応が発生する熱が蓄積し、その熱により物質が変化し自ら被酸化物質を供給しながら酸化反応を加速する現象」と表現して初めて実際の燃焼の様子に近づく。
しかしこの表現でも全てを表していない。燃焼という現象は極めて複雑である。この複雑な現象をうまくモデル化できたならば少量で効果のある高分子の万能難燃剤を設計できるであろう。しかし少量(数%未満)でどのような高分子でも難燃化できる万能難燃剤という材料は存在しない。20%程度添加する条件で考えた時には、ホスファゼン系難燃剤始め一部のリン酸エステル系難燃剤、酸化アンチモンとハロゲン系化合物の組み合わせなどは万能難燃剤と言えなくもない。しかし難燃剤の20%以上の添加という配合は高分子の他の物性に影響が出る量である。
このように考えると高分子の難燃化の科学がいかに難しい領域か想像できる。しかし、技術としての取り組みでは、機能を実現する方法に重点が移るので科学の研究のように普遍的真理を追究するよりも易しくなる。すなわち、商品の品質を達成できる難燃化技術開発というテーマでは、難燃化規格が存在するので、その規格を目標として設定して開発を行えばよい。これは他の物性に影響の少ない高分子に適した難燃剤の種類と量の選択の問題となる。
高分子の難燃化というテーマは、科学と技術の違いを理解するのに良いテーマである。このテーマに科学として取り組むと底なし沼の状態になる。しかし、技術では難燃規格が存在するのでゴールが明確であり3ケ月もあれば一応の技術成果を得ることができる。但し特許に抵触しない技術になると半年は必要かもしれない。明らかに、科学として高分子の難燃化研究に取り組む場合に比較して易しい。技術では、いざとなればホスファゼンあるいは酸化アンチモンとハロゲンの組み合わせ処方を使うことができる。
高分子の難燃化について科学的アプローチは難しいので技術開発をやりながら新しいアイデアを探す、あるいは新しいコンセプトで技術開発を行う、という取り組みをすると新しい高分子の難燃化技術を見つけることができる。科学的研究では難しいが、技術では驚くべき仕掛けで機能を実現すればよいので面白いコンセプトを見つけ出すことが可能となる。
このような考え方で、退職前取り組んだ射出成形用PETの開発(注)では、難燃剤を用いなくともUL94-V2を通過できる難燃化システムを開発できた。PETを80%前後、他の高分子を4種類ほど総量で20%添加し実現できた。この時のコンセプトでは、混練技術が大きな寄与をしている。すなわち32年間勉強してきた高分子技術の総力をあげて開発した技術である。
(注)PETは良好な射出成形体を得るのが難しい高分子である。そのため、フィルムやブロー成形用樹脂として応用開発が進められた。また、燃えやすく難燃化も難しい材料である。フィラー無しで良好な射出成形体を得るのも難燃化も難しいという、難燃化技術の可能性を研究するのにまたとない機会が定年退職半年前にありました。ゴム会社でポリウレタン発泡体の難燃化技術開発を担当して31年目のことです。発泡体も難しかったがPETの難燃化も強相関ソフトマテリアルというコンセプトで技術を考えたので大変難しく苦労しました。
カテゴリー : 一般 高分子
pagetop
高分子の難燃化技術については、1970年代にほぼ基礎的な考え方ができあがりその後様々な難燃剤が提案された。1980年前後には優れた教科書も元東北大村上教授らにより翻訳されている。
当時最も高分子の難燃化に有効な考え方は、高分子表面にチャーをうまく形成させる、というコンセプトで、さらに優れていると言われたのは、イントメッセント系の難燃化システムである。イントメセント系というのは、燃焼している表面にチャーの発泡層を形成する考え方で、燃焼面の研究から生まれてきたコンセプトである。
1980年に軟質ポリウレタン発泡体を研究開発していたときに、一連のコンセプトを試し、ホスファゼン変性軟質ポリウレタン発泡体を4ケ月で開発したがコストの問題があった。今は大塚化学から安価にホスファゼン誘導体を入手できるようになったが、当時はヘキサクロロシクロトリホスファゼンが、kgあたり数万円していた時代である。コストも調べないで研究開発を進めた、として始末書を書かされた。まだ入社して1年しか経っていないときである。
しかしこのホスファゼン変性軟質ポリウレタンフォームは、難燃化手法の新しい情報を提供してくれた。すなわち、燃焼時に極端に煤の発生が少なく、効率的にチャーを形成していると思われ、さらに燃焼後の残渣を分析すると含有されていたリンのユニットが100%近く残存していたのである。イントメッセントは形成されておらず、一般のリン酸エステル系難燃剤に類似したチャーが形成されていたが、リン原子1モルあたりのLOI増加率は一般のリン酸エステル系難燃剤の1.3-1.5倍だった。
イントメッセント系が注目され始めていた時に面白い実験結果が得られたので、始末書にめげず新しい難燃化システムを提案し、3ケ月で工場試作まで実現した。硼酸エステルとリン酸エステルの組み合わせ系のシステムで燃焼時にガラスを形成するコンセプトである。
燃焼時に市販のリン酸エステル系難燃剤ではオルソリン酸が形成され系外へ蒸発する問題を見つけ、ホスファゼンでは、燃焼時にオルソリン酸が形成されず無機高分子が生成していることに着目してアイデアが浮かんだ。イントメッセント系のアイデアとは全く異なるのである。
燃焼面を調べてみると、コンセプト通りにボロンホスフェートができており、リン酸エステル系難燃剤を用いたにもかかわらず、燃焼後の残渣にリンがホスファゼンと同様に100%残っていたのである。
すなわちイントメッセント系でなくとも高い難燃化システムを設計することができたのである。チャーの発泡層を形成することは難しいが、リンを含むユニットを系内に閉じ込めるアイデアは、他にもありただ組み合わせるだけなので材料設計は容易である。
カテゴリー : 高分子
pagetop
LOI21以下の汎用樹脂は燃えやすく、電気製品や自動車部品に用いるときには必要に応じて難燃剤を添加し難燃性樹脂として使用している。難燃性樹脂を混練するときに混練温度の管理は重要である。
高分子に含まれる炭素原子と炭素原子、あるいは炭素原子と水素原子との単結合は、280℃以上の高温度になると切断しやすくなる。ポリオレフィン樹脂の熱安定性を熱天秤で確認すると300℃前後まで安定に見えるが、混練時には剪断力も働くので高分子の種類あるいは混練条件によっては280℃以下の温度でも原子間の結合の切断は生じる。また高分子はヒモのような構造なので剪断力を大きくかければ150℃以下でも切断する場合がある。
難燃剤の場合にはもっと深刻な問題がある。難燃剤には炭素原子と炭素原子の結合よりも弱い結合が含まれている場合がある。例えばハロゲン原子を含んだ難燃剤の場合には、180℃前後の温度でハロゲン原子が遊離する。ハロゲン原子はラジカルとして発生するので他の物質に再結合する場合もあるが、熱天秤の観察結果では、多くのハロゲン系難燃剤でこの温度近くにおいてハロゲンが遊離する。ある種の難燃剤では150℃以下でも環境条件によってハロゲンが遊離する。
樹脂の難燃化機構では樹脂の分解温度近くで分解する難燃剤が理想的と40年以上昔から経験的に知られていた。ただ、熱分解し空気中で効果を発揮する難燃剤の場合には低温度で分解しても効果が発揮されていることが確認されている。ハロゲンと酸化アンチモンの組み合わせ型難燃剤は、空気中でハロゲン化アンチモンを生成し、燃焼中の樹脂表面に滞留して空気の遮蔽効果が発揮され燃焼を止めると言われている。この機構であれば低温度で熱分解してもアンチモンとの反応条件さえ整うと難燃効果を発揮する。しかし難燃剤の開発の歴史を見ると難燃剤の分解温度を高めることは一つの重要な技術課題であった。現在でも280℃以上の温度まで安定な難燃剤は少ない。
非ハロゲン系難燃剤は環境問題の関心が高まるとともに重要な研究課題となり、リン酸エステル系難燃剤にも非ハロゲン系の難燃剤が品揃えされるようになった。その中には280℃以上の温度でも安定な難燃剤が存在する。しかしこのような耐熱性の高い難燃剤が使用されている例は少なく多くの場合は、250℃前後から難燃剤は分解する、と考えて対応した方がよい。すなわち混練温度が250℃以上になると難燃剤の分解を心配しなければいけない、と大雑把に考えてよい。ハロゲン系難燃剤の中には150℃前後でも分解する物質があるが、難燃剤メーカーに混練条件を提示した場合にはそのような低温度で分解する難燃剤は供給されない。
このように考えると難燃剤を添加した難燃性樹脂の混練は剪断力の効果も考慮すると250℃以下で行うことが望ましい。使用する難燃剤の熱分析データを見て混練条件を考えるべきであるが、そのように行われないケースを見てきた。大手の樹脂メーカーの技術サービスの話を聞くとびっくりするような混練条件の決め方をしている場合もある。熱分析データは熱天秤とDSCの両者を見るべきだが、一度も熱分析データなど見たことが無い、というケースも存在する。そのようなメーカーの樹脂は安くても購入しない方がよい。
最初の段階で混練条件が悪ければ、そのリサイクル樹脂についてはどのような温度条件を設定しても難燃剤が熱分解した樹脂となる。しかし難燃剤が樹脂内部で分解していても難燃性能に大きな影響が出ない場合がほとんどである。だから難燃剤の耐熱性に無頓着な樹脂メーカーも存在するのだろう。ただし力学物性や絶縁性に影響が出る問題は深刻である。難燃性樹脂のリサイクルでは樹脂の耐久性に注意する必要がある。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
1980年頃に書かれた導電性高分子の教科書は、導電性高分子が夢の材料になっており、最も導電性が良好な高分子材料でも半導体領域の導電性であった。そして導電性高分子にするにはカーボンの添加が不可欠との説明がされていた。白川先生の論文が発表されてしばらくしてからの教科書である。
高分子の大半は絶縁体である。経済的に半導体領域の材料へ変性するには、今も昔もカーボンの添加が最も効率的である。しかし、この時パーコレーション転移の制御という材料技術が重要である。試行錯誤で半導体領域の材料を製造することができても安定な生産が難しい。
パーコレーション転移の概略説明は以前書いているので、ここでは特許を書くコツを幾つか公開する。ただこの説明も工夫しなければ、ここに書いたとたん、コツは分かったが、もう特許に書けない、ということになりかねない。ゆえに公知の範囲で記載し、特許になりそうなところは、文脈で理解して頂けるような書き方をする。奥歯にモノが挟まったような文章になるが---。
1.パーコレーションではクラスターが長くつながる確率が問題となる。この確率を100%にできる、あるいは0%に制御できる技術が特許になる。
2.パーコレーション転移で得られる導電性は、マトリックスの電気抵抗と粒子の電気抵抗で決まる。粒子の電気抵抗の制御方法とマトリックスの電気抵抗の制御方法はそれぞれ未知の方法が存在する。
3.マトリックスの電気抵抗は、カーボンを分散したときに不純物の影響で変化しているはずで、そこをうまく表現した特許は少ない。(ご相談頂ければ詳細説明いたします。)
4.粒子の抵抗は、表面処理や凝集状態で変化する。(ご相談頂ければ詳細説明いたします。)
5.高分子中にカーボンを分散する方法は、混練技術になるが、混練手段によりクラスターのでき方が異なる。この定量化は難しい。
6.傾斜組成の場合と均一分散の場合では、体積固有抵抗と表面比抵抗の関係が崩れる。インピーダンスも変化する。このあたりの関係について論文は少ない。
7.パーコレーションは粒子の分散以外にも界面活性剤の分散や、導電性高分子の添加でも観察される。
8.PEGは面白い添加剤である。
カテゴリー : 電気/電子材料 高分子
pagetop
ポリエチルシリケートとフェノール樹脂を酸触媒存在下で混合すると透明な樹脂ができる。リアクティブブレンド技術なので両者の反応速度がうまく合わなければならない。このような実験では、試行錯誤で実際に組み合わせて実験を行った方が早く結果が得られる。実際に12時間程度の実験で安定に合成できる条件が見つかった。
このような実験方法はアカデミアの先生に理解されない、と思っていたら、iPS細胞発見の実験では、同様の方法でヤマナカファクターを山中先生は見いだしていた。テレビ放送では、その手順については初公開と言われていたので、研究手法として批判を浴びる、と判断され隠されていたのかもしれない。すなわちどうやって見つけたかは秘密にしておいて、iPS細胞ができることだけを示し、その先の研究を行っていても研究として成立する。見いだした方法を秘密にすることも許される。むしろ秘密にした方が権威が出るし、テレビで発表された方法では、SiCの発表を初めて日本化学会で報告したときのように、批判を浴びたと思われる。ノーベル賞受賞後であれば、一定の評価が得られたので、公開した方が世の中のためになる、と評価される。
SiC前駆体の合成に関しては、酸触媒の選択方法について当然質問が出ると思い、酸触媒の検討結果を○△×で示したが、これが批判を浴びた。しかし、批判してはいけないのである。新しい実験事実が出ているのであれば、賞賛すべきところである。学会発表は学問の純粋性を追求する場であると同時に進歩を促す場でもあるのだ。もし新発見の事実があり、その発見が今後の研究に影響を与えるのであれば、まず発見できたことを褒めるべきである。
山中博士が遺伝子を細胞に全部放り込んだ実験結果をノーベル賞受賞後まで隠されていた気持ちは、よく理解できた。30年経っても変わっていないのである。学会は研究者が切磋琢磨する場であることは認める。しかし一方で新しい研究を促進する役目もあるのである。学会賞はそのためにあるが、この学会賞も嫌な思い出がいくつかある。
新しい発見について、まずその事実を評価する議論がなぜできないのであろうか。これは企業内でも同様のことが起きるのだが、直接利益につながる話であれば、論理の厳密性はそれほどの議論にならない。学会よりも企業内の評価は健全である。ただ、企業それぞれの風土により成果に対する評価が異なる。新しい発見を促進できる風土の企業は業界トップになっている。学会同様にプレゼンテーションを重視する企業は注意した方がよい。技術開発の実験よりも書類作成に多くの時間が割かれていないか?
企業では結果をまず大切にする姿勢が重要だと思っている。以前この蘭では、まず「モノ」をつくることの重要性を指摘したが、それはゴム会社で学んだことである。「こんな書類を持ってくるよりも、実際にモノを見せてくれれば研究費を出す」と言われて、徹夜してモノを造って翌朝見せたところ、研究予算を認めてもらえた感動は今でも覚えている。(「簡単にできるならやらない方がよい」という評価をだす会社もあるようだが、それは若い研究者の情熱を理解していない会社だ。)発見プロセスやプレゼンテーションなどよりも、目の前に「モノ」が示されている重要性は、研究開発を32年間行ってきてよく理解できた。
学問の進歩も新しい事実が示されて促進される点を重視するならば、学会での議論の視点も変わると思う。まずプロセスありき、あるいはプレゼンがまず重要だ、という学会では将来が心配である。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
半導体用高純度SiCについて学会発表当時はデータも少なく、学位論文を辛うじてまとめられる程度であった。学位論文には、新前駆体を用いたSiCの反応機構について研究結果をまとめたが、日本化学会での発表が妥当であったか悩むところである。S教授から散々のコメントを頂いたが、おかげで研究に対する理解と当時の研究動向の最前線について情報が得られた。
無機高分子研究会に所属し学会活動をしていたが、SiC前駆体高分子に関する情報を当時の文献や学会から得ることができなかった。特許にも、フェノール樹脂とシリカの組み合わせあるいはカーボンとポリエチルシリケートとの組み合わせが公開されたばかりで、フェノール樹脂とポリエチルシリケートとの組み合わせについて存在しなかった。
そもそもフェノール樹脂とポリエチルシリケートとはフローリーハギンズ理論から相溶しない組み合わせと思われており、この組み合わせで均一になる、というのは驚くべきことなのである。また当時この組み合わせを実験する、ということはフローリーハギンズ理論をよく理解していない、と評価されたのである。S先生のコメントにもそのような見解が入っていた。S先生は当時RIMで実用化されていたリアクティブブレンド技術をご存じなかった。単なる低分子の重合反応という認識であった。χの大きな高分子の組み合わせでリアクティブブレンドが進行するというのは学術の世界ではタブーのようであった。
新前駆体を用いた高純度SiCの合成反応は学術の視点から散々な評価であったが、技術としてはまっとうなコンセプトで開発された。すなわちχが大きく均一安定化が難しいので、リアクティブブレンドで安定化させようと反応触媒に視点を置き開発したのである。学会発表でもそのコンセプトをプレゼンテーションしたが、そもそも均一に混ざらない系で触媒を検討する発想を理解できない、とこき下ろされた。
S教授のところからその後ππ相互作用を活用した無機高分子の研究などが公開されてくるのだが、技術が学術よりも先行するとこのような事態になる。しかし、このような状況だから春季年会に企業研究者の出席が少なくなってきた、ということをアカデミアの方は気がついているのであろうか。1970年代石油化学が隆盛を誇っていたとき企業研究者の学会参加が多かった、と聞いている。技術と学術が切磋琢磨した時代の話である。
学会で技術発表をしづらい雰囲気ができ、企業も技術の成果を機密扱いにして学会発表を控えるようになった。これでは学会に企業研究者の参加が少なくなって当たり前である。ATPの企画で企業参加が少し増加したが、かつての技術と学術が切磋琢磨した状況とは少し異なっている。新しい技術を生み出すために学術が必要かどうかは、人類の歴史を見れば明らかで、学術など無くとも人間の営みとして技術は生まれるのである。しかし、技術の発展するスピードに学術の果たす重要な役割がある。研究のネタを技術の中に探索するアカデミアの姿勢が必要な理由である。1970年代にはそれがあった、と故石井教授から学んだ記憶がある。
研究とは新しいことを見つけ出す活動、と故小竹先生は言われたが、この活動は企業の技術者も楽しんでおり、アカデミアだけに許された活動では無いのである。アカデミアがどうあるべきかを論じる立場では無いので、お願いという表現になるが、開発された技術の中に存在する真理を拾い上げそれを人類資産として明確にする活動をできないでしょうか。もしそのような視点の研究発表が学会に増えれば企業研究者は自然に学会参加するようになる。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
フェノール樹脂とポリエチルシリケートを均一に混合した前駆体高分子を用いた高純度SiCの技術発表を日本化学会春季年会で初めて行ったときには、反響が大きかった。講演会場は7分という講演時間の発表に対し、廊下まで人があふれんばかりの混雑ぶり。驚いたのは一番前の席は京都大学S教授の研究室の方々が陣取っていた。
企業の研究発表としては、異例の早い時期での発表であった。無機材質研究所で行った研究という位置づけだったので外部発表許可が容易に下りたのだ。しかし、前駆体高分子の重合に関してはたった1日の実験データだけである。研究らしい報告と言えば、前駆体の熱分解を超高温熱天秤で評価したデータぐらいである。7分の講演なのでその程度の内容でも充分であったが、発表後が大変だった。
S教授から厳しい質問があり、研究未完成の評価を下されたのだ。今から思い返しても企業研究者に対して失礼な質問だったと思う。学会は完成された研究の発表であり、未完成の研究など発表するな、とまで明確には言われなかったが、それに近かった。
10年ほど前から日本化学会ではATPというセッションを設けて積極的に企業技術者や研究者の学会参加を促している。企業研究者の参加が減少してきたための対策であるが、研究の香りのしない技術発表でも許されるような年会であれば、企業参加者は減少しない。アカデミアの先生の中に速報的な内容や技術発表を軽視される方がいるのが問題である。(そもそも企業の技術者が参加しなければ損をするような研究発表がいっぱいであれば、技術者の参加が減少することはないと思われるが。)
化学会の春季年会は、学生研究者のデビューの場でもあるが、企業技術者の積極的発表も促すようにすれば、企業からの参加者も増えると思われる。技術のPR的内容でもよい、と思う。その中に科学的研究の香りが入っておれば、新しい研究のヒントが生まれる可能性だってある。かつての技術に対する排他的雰囲気が企業技術者の参加減少の一因のようにも思っている。
日本化学会春季年会で高純度SiCの発表を行った理由は、無機材質研究所で行った部分を明確にする目的があった。公的研究機関で実施された部分を早い段階でも公開するのは義務だと思ったからである。しかし散々な結果であった。
カテゴリー : 一般 電気/電子材料 高分子
pagetop
かつて研究開発を行う時に、シーズを基に行うのか、ニーズを基に行うのかという議論が成された時期があった。しかし昨今のiPHONEやiPADを見てニーズを創り出す研究開発が重要、と言う人がいる。
シーズとニーズ議論の時にも議論の内容に違和感を感じましたが、このニーズを創り出す研究開発論も「何を今更」という印象を受ける。それぞれ間違ってはいないが、ただその時代に起きた現象を説明しているだけ、との印象を受けるのは何故だろう。
企業のこれまでの研究開発でニーズを考えないで行われていた例があるのだろうか。そのスキルに差があるがどこの企業でもマーケティングは行っているはずだ。iPHONEやiPADでもニーズが期待されて開発された商品である。故S.ジョブズ氏にもマーケットを見誤り失敗していた時期があったのは著書を読むとわかる。また、シーズ指向で研究開発を行っていても、将来のニーズを期待しての活動であったはずだ。時代の流れの中で研究開発の効率が悪くなった時にこのような議論が起きているように感じる。
iPHONEでは、インテルが事業規模を見誤り、アップル社からチップ開発を依頼されたがコストが合わないという理由で断った話が公開された。ニーズをよく考えて失敗した例になるのだろう。単純にシーズニーズから研究開発の効率をあげる議論はできないように感じる。研究開発のあるべき姿は、企業と市場にイノベーションをもたらし利益を生み出す活動となるが、どのようにイノベーションを起こしたらよいのかは、企業の使命や置かれた環境で変化する。
このイノベーションを考える時に価値の共創という市場の動きに注目することは重要である。昔もあったが、モノがあふれてどのような商品開発を行ったらよいかわかりにくくなっている昨今、この価値の共創という市場の動きを活用して研究開発を行うことは重要であり、その方法を解説した本も出版されている。
価値の共創ではシーズも重要になってくる。その企業の強みであるシーズから市場で価値の共創が行われ新たな価値が生み出されたならば、他社にまねされにくい独自商品を生み出せるからである。価値の共創過程を見ていると、企業の持っているシーズを新たな視点でカテゴリーを再編成する必要性を感じる。シーズのこのような見直しは、研究開発の効率改善に役立つ手段と思う。
カテゴリー : 一般 電気/電子材料 高分子
pagetop