混練の実務で役立つ熱分析装置には、先に紹介した機械的熱分析(TMA)と熱重量分析法(TGA)、示差走査熱量計(DSC)、粘弾性測定装置などがある。
TMAは熱膨張の測定だけでなく、粘弾性測定も可能な装置が市販されている。試料に押し棒を乗せ、温度を上昇あるいは下降させて押し棒の変位を計測するTMAの熱膨張測定では、各温度における線膨張率が求まり、そこには、主に高分子の一次構造や高次構造因子の情報が含まれている。
天秤と加熱炉を組み合わせたTGAは、試料を加熱してその重量減少を調べる装置だが、高分子の一次構造因子が測定データに反映される。昇温速度を変えて測定して熱分解の動的解析もできる。この原理を理解できると、TGA曲線の変化から混練時に化学反応の有無を予測できるようになる。
また、熱天秤の精度も高いので混練時の熱による微量ガス発生の有無を調べることが可能である。特に高分子の難燃化技術を検討するときには、経験知的方法になるが難燃剤の作用機構を調べる簡便な実験もできる。
TGAもTMAも測定装置を実際に使用すれば、その機構と原理をすぐに理解できるが、DSCは、外観からその測定原理が分かりにくい。
TGAは昇温条件で測定し、TMAやDSCは一定速度で昇温あるいは降温の両方向で測定できるが、TGAもTMAも試料で生じる現象を直接観察しているのに対してDSCでは比較サンプルに対する熱量変化を観察している点が異なる。
カテゴリー : 高分子
pagetop
自由体積部分では動ける範囲の運動が行われている。その他、高分子鎖が積み重なり運動が凍結された部分でもレピュテーション運動が起きているかもしれない。
その結果、分子同士のあたかも忖度が働いたような運動、すなわち、より構造的に全体が安定な状態になろう、あるいは歪を緩和しようとして全体で動く。この構造緩和現象により体積収縮が起きる。
ここで、急冷ガラスのTgをTgqとし、徐冷ガラスのそれをTgaとすると、Tgq>Tga。すなわち、冷却速度と高分子材料のTgは関係しており、高分子がプロセスの履歴をひきずる、と言われる原因の一つである。
ところで、高分子材料を混練できる温度領域について。二軸混練機を用いた熱可塑性樹脂の混練では、よくTm付近の温度がシリンダー温度として設定されるが、Tm以下でTg以上の低い温度に設定しても、モーターの能力さえあれば混練可能である。
ちなみに結晶性樹脂では、Tc前後の温度設定でも分子量低下を起こさず混練可能である。ゆえにシリンダー温度は、Tg付近に設定しても混練可能で、そのような特許出願もされている。
カテゴリー : 高分子
pagetop
このガラス化過程の歪について、昇温条件でDSCの測定を行うと、冷却時の履歴がTgに反映されてピークとして現れることもある。
この現象は、例えば結晶化速度の速い結晶性高分子で観察される。この時、体積が減少して高分子鎖の一部分が規則正しく並び、折れ曲がりながらラメラ晶を形成していく。
混練された高分子からペレットを製造するときの熱的変化は、急冷過程となる。このように溶融状態から冷却速度を早くした場合には、体積の収縮が冷却速度に追いつかず、そのままの構造が凍結されるので自由体積が多くなり、その結果密度は低くなる。
この時生成されるのは急冷ガラスであり、結晶化速度の遅い高分子であれば、全く結晶化しない場合もある。
結晶化速度が早い高分子でも結晶化しない場合や部分結晶化で止まる場合などまちまちで、これがペレットのばらつきの原因となる。
もし、これをゆっくりと平衡状態に近い条件で冷却をしたならば、徐冷ガラスとなる。厚みのある成形体の中心部はこのようになる可能性がある。
結晶性高分子であれば、昇温条件でDSC測定を行ったときに結晶化ピークが現れないほど結晶化が進む。
ここで注目していただきたいのは、急冷した場合と徐冷した場合では体積が異なる現象である。もし、急冷ガラスについて、Tg付近でアニールしたならば収縮して徐冷ガラスの密度に限りなく近づく。
余談だが、一般にアニールを行う時にはTg以下Tg-20℃以上の温度領域で長時間かけるが、Tg以上で急速アニールする特殊な技も開発されている。この場合も徐冷ガラスの密度に限りなく近づく。
いずれの条件で行っても、アニールにより急冷ガラスの体積収縮は生じる。もし結晶性高分子であれば、ラメラ間の非晶部分のパッキングが進み密度が上昇する。この現象を観察するための実験はガラス状態を理解するのに役立つ。
すなわち、ガラス状態はマクロな視点(通常の観察時間)で見る限り固体と同じであるが、紐のモデルの如く高分子鎖一本一本のレベルで見ると、高分子材料の温度に相当するエネルギーレベルで運動している融体(液体)の状態と同じである。
カテゴリー : 高分子
pagetop
これは、高分子材料では必ず非晶部分が存在するためである。すなわち、高分子材料について熱分析を行うと、測定条件の影響で相転移である結晶化は観察されないことはあっても、相転移ではなく緩和過程の現象を示すTgは、結晶性高分子でも必ず観察される。
Tgの理論的取り扱い方について、粘度が1012Pa・s付近になるとガラス転移が起きる、という等粘性状態の考え方や、自由体積分率が0.025になった時にガラス転移が起きる、という等自由体積状態の考え方、その他等配位エントロピーの考え方など多数存在する。
等自由体積状態の考え方ではVhが自由体積となり、Tg以下に冷却された時に一定値Vhgとなる。
ところが、混練して得られるペレットの密度ばらつきや成形体の密度ばらつきなど同一配合処方でも自由体積の量がばらついている、と考えなければ説明がつかない現象は多い。
これは、グラフが平衡状態における現象を示しており、混練で得られるペレットは非平衡状態で冷却されて作られるから、として説明できるが、Vh+ Vlを自由体積とする考え方も存在したりするので、形式知によるTgの理解は難しい。
経験知的には、溶融糸まり状の高分子が、冷却により体積が減少し、隣り合っている高分子のヒモ同士がぶつかり、歪を抱えたまま動けなくなる温度がガラス転移点Tgである。
これは、満員になっていない80%程度の乗車率の電車で急ブレーキがかかった瞬間を想像してみると理解しやすいかもしれない。高分子を急冷したときには恐らく悲鳴を上げる様な分子も存在するかもしれない。
ただし、電車がゆっくり停車するような状況では、乗客は皆自分の快適なポジションを探しつつ、それぞれの位置で落ち着く。高分子も同様で、溶融状態から平衡を維持しつつ冷却していったなら、結晶性樹脂の場合にはラメラができてそれが球晶に成長し、そしてガラスを生成して固まる。このガラスを生成した時の温度がTgである。
混練プロセスで平衡を維持しつつ冷却するのは困難であり、ガラス化過程で何処かの高分子に歪が残っている。ゆえに、Tg付近で試料の熱処理、アニールを行うと歪が緩和されて密度が上ったりする。
あるいは、溶融状態からフィルムを製造した時に、表裏で冷却速度が異なると、歪も表と裏で異なる。その結果、室温で放置した時に内部の歪が緩和してフィルムが反ったりする。
カテゴリー : 高分子
pagetop
高分子材料を混練するためには、それが流動性を示す状態となるまで加熱しなければいけない。まず、高分子が溶ける温度、融点(Tm)について説明する。
Tmは、結晶の自由エネルギー(G)変化を示す直線と融体のGの変化を示す直線との交点に現れる。高分子の融解は1次の相転移である。
ちなみに、エンタルピーをH、エントロピーをSとすると、Gibbsの自由エネルギーの定義から
G=H-TS (2-1)
δG=δH-TδS (2-2)
ここで高分子の熱運動について結晶状態と融体状態で比較すると、融体状態のSが大きくなる説明はいらないだろう。ここでSは、場合の数の関数として捉えると現象とSというパラメーターとの関係について理解しやすい。
高分子の結晶状態はラメラを形成し規則正しく並んでいる状態であり、溶融した高分子が乱れて運動している状態よりもその取りうる場合の数は圧倒的に少ない。
取りうる結晶系が一つであれば1の場合もありうる。するとδS(結晶)<δS(融体)を納得できる。すなわち、両者負の傾きを有し、結晶よりも融体の変化を表す直線の傾きは大きくなる。
さて、無機材料では、結晶化の温度(Tc)とTmは一致するが、高分子ではこれが一致しない。そのうえTm>Tcという関係はあるが、高分子の種類によりTmとTcのズレ方が異なっている。
例えばPEでは、最大のTc(Tcmax)は、Tmの0.8から0.9倍であるが、ポリエチレンテレフタレート(PET)では、2Tcmax=Tm+Tgの関係があることが知られている。
ところで、高分子では融体と結晶で分子の状態が大きく異なるので、溶融するとδSは大きくなることが予想される。
結晶から融体の変曲点では、δG=0となるので、Tm=δH/δSであり、Tmは低下することが理解できる。剛直な棒状分子ならばδSが小さくなるため、Tmが高くなると予想できる。
これは、δSについて考察を進めた結果だが、極性分子や水素結合を生成し分子鎖間に強い相互作用や凝集エネルギーが働く場合には、δHが大きくなるのでTmは高くなると推定される。
カテゴリー : 高分子
pagetop
無機材料では、形式知に裏打ちされた結晶構造で物性や機能の議論を進めることができたが、高分子では非晶質構造がその機能に影響しているという大きな問題がある。
また、高分子の中には、結晶化しやすい材料や結晶化の速度が遅いか結晶化しない高分子などがあり、同定する時の手掛かりとなる成形体に含まれる結晶の状態さえも多様である。
結晶化しやすい高分子については、材料の構造を階層的にとらえることが可能であるが、無機材料の結晶構造より複雑である。
高分子鎖が結晶を構築する場合には、分子鎖間のパッキングあるいは高分子鎖の一部が規則正しく凝集することにより、主に六つの結晶単位格子が形成される。
すなわち、正方晶と六方晶、三方晶、斜方晶、単斜晶、三斜晶の単位格子であるが、例えば紐のイメージに近いポリエチレン(PE)の場合、炭素数が70以上となる分子鎖は、その一部分で平面ジグザグ構造をとり、斜方晶からなる結晶構造をとる。
ところが、高分子鎖は長いのでそのヒモのような構造を折りたたみながらラメラと呼ばれる構造まで結晶成長してゆく。
高分子鎖が折りたたまれて結晶化するこのような現象は、PEに限らずナイロンなどの合成高分子やセルロース、ポリペプチドなどの天然高分子にも見られる普遍的な現象である。
ラメラ晶は、非晶質構造を挟みながら成長してゆき長周期構造を作り球晶構造まで成長する。
カテゴリー : 高分子
pagetop
自由体積分率がばらつくと、高分子成形体の密度もばらつくことになる。密度がばらつけば、弾性率や誘電率もばらつく、という具合に諸物性の連鎖を理解できると、自由体積の正体だけでなくそれを制御する方法を知りたくなる。
ところが、自由体積分率は、コンパウンドの配合で変化するだけではなく、プロセスで設定される条件や、そのばらつきなど様々な要因によっても変化する。
混練では、混練機とその運転条件や動作のばらつきで自由体積分率は変化していると思われる。混練プロセスでばらつき、さらに成形プロセスでもばらつくので、高分子の成形体物性のばらつきを抑える技術は難しい。
このプロセス段階で制御できない自由体積について、高分子を説明するときに無視できない。しかし、厄介なことに非晶質構造のため、形式知が乏しく気軽に測定したり設計段階で予測したりすることができない。
カテゴリー : 一般 高分子
pagetop
炭素と炭素とが共有結合でつながっている高分子では、昨日の考え方を少しイメージしにくいかもしれない。
しかし、原子の独立した球が結晶を構成している無機材料でこの概念を導入すると形式知を体系化するうえで都合が良い。
セラミックスの研究では、このような相関を意識して進められ、主に焼結体の構造と機能との関係、そして焼結体の構造と原料粉末の物性との関係などが20世紀に体系化された。
高分子科学が、主に高分子の重合研究、すなわちまず原料を製造するところから研究が始まり、合成された新規高分子についてその用途開発へ進んだ流れとは少し異なっている。
21世紀になるやいなや、「精密制御高分子プロジェクト」が5年間推進され、そのプロジェクトでは、強相関ソフトマテリアルという言葉が使われている。
これは、20世紀末に主に高分子材料あるいはその成形体で事業を営んでいるメーカーで、従来の高分子(ポリマー)設計手法を見直し、商品性能をターゲットにした材料設計手法を行うようになってきた技術の進歩を表現している。
そして高分子の高次構造だけでなくメソフェーズ領域も注目され、高分子材料を階層化してとらえて、物性との相関を調べてゆこうという動きが出てきた。
カテゴリー : 高分子
pagetop
セラミックスの粉砕技術を参考に粒子の混合と分散について説明したが、無機材料科学の進歩の過程で、強相関物質という以下の概念が生まれている。
固体や液体は凝縮系(condensed matter)と呼ばれる原子の集合体と捉えられる。
この凝縮系の物性を測定した時に最も対照的な値を示すのは、金属(導体)と絶縁体である。
今、典型的な金属を考え、仮想的に原子間の距離を広げてゆくと、孤立した原子の集合体となる。
この時孤立した原子の集合体ゆえに電気は流れないはずで、さらにこの系の変化は原子間距離の関数として表現でき、その連続関数の途中で金属から絶縁体へ相転移を起こすはずである。
この仮想物質で変化している物性について理解を進めるには、金属側から考えるアプローチと絶縁体側から考えるアプローチがある。
両方のアプローチを統合し、すべての物質を統一的に記述することが物性物理の究極の目標という考え方が、無機材料の形式知にある。
カテゴリー : 高分子
pagetop
セラミックスでは造粒と呼ばれるプロセシングノウハウが開発されている。
これは粉砕技術(ブレークダウン)の進歩や、ビルドアップにより超微粒子化したために取り扱いにくくなった微粒子を取り扱いやすいように、形状制御された凝集粒子を製造するプロセシングノウハウである。
このプロセシングノウハウを応用して、混練前に高分子とその他の添加剤とを用いて造粒することが可能である。
この前処理により、多成分を配合して製造されるコンパウンドを1台のフィーダーで生産する時に発生する組成ばらつきを抑えることに成功している。
カテゴリー : 高分子
pagetop