活動報告

新着記事

カテゴリー

キーワード検索

2013.12/29 未来の材料設計

機能性低分子材料のコンピューターによる材料設計は、40年前コーリーらが逆合成のコンセプトで分子の合成ロジックを完成し、コンピューター上で効率的な合成ルートを評価したことに始まる。そして現代ではパーソナルコンピューターでその機能をシミュレーション可能なレベルまで到達している。

 

また、無機材料も固体物理の進歩によりコンピューターでその機能をシミュレーション可能なレベルに到達している。しかし、高分子については10年ほど前に元東大教授土井先生らのOCTAが完成したが、現在シミュレーターのテスト段階という状況である。

 

テスト段階であるが、例えばSUSHIのように現実系に適用できるシミュレーターもできている。ポリマーアロイの材料設計についてはSUSHIと経験知を併用するとコンピューター上である程度の実験が可能となる。OCTAが機能性低分子材料の設計のように使われるまでまだまだ時間がかかりそうであるが、原因は高分子物理の遅れにある。

 

高分子物理については、元東大教授西先生らのグループが地道に行っている分子1本のレオロジーの研究が重要である。レオロジーについては40年前の状況と現在では大きく変わったにもかかわらず、その変化が産業界に十分認知されていないように思う。

 

昔はあるスケールの大きさで高分子を眺め、計測されたレオロジーデータから高分子物性を議論していたのが、現在は分子一本から観測されるレオロジーデータを考察し高分子物性を議論しようとしている。この実験は気の遠くなるような実験で一つのデータを見る限り遊んでいるようにしか見えない問題がある。

 

しかし、このデータが必要な実務の現場が多数あるはずで、産業界はもっとこの研究に注目し、現場の情報を提供すべきであろう。実務の現場で得られたデータとこの研究が結びついたときに分子1本からメソフェーズ領域、そして目視可能なマクロ領域まで高分子物性の理解が連続的に進む。その結果高分子の材料設計がモノマーから自由に可能となる。

 

このコンセプトをある程度コンピューター上で実現しようとしたのがOCTAのように思われる。ここで「思われる」としたのは門外漢としてOCTAを眺めてきたからである。しかし退職後OCTAを勉強してみると高分子物理の向かうべき方向が示されていると考えるようになった。すなわちコンピューターのプログラムがあたかも高分子物理の哲学のようでもある。細部のプログラムを理解できていないのでオペレーションからの推定になるが、土井先生がOCTAで目指されたのは高分子材料設計における設計図の概念かもしれない。

 

(注)OCTAは名古屋で生まれたので名古屋の市のマーク「丸八」(布団屋ではない)から由来している。

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.12/26 パーコレーション転移制御技術

パーコレーション転移について材料科学の分野では未解明な部分が数多く残っている。数学的には確率過程で説明されるが、材料科学ではここへ材料固有の問題が加わる。すなわち高分子をバインダーに用いて導電性粒子をその中に分散し、半導体フィルムを製造しようとすると、溶融時の高分子の挙動が科学的に解明されていない場合には技術でこの問題を解くことになる。しかもKKDを働かせて科学的取り組みを行いながらモノを創り上げてゆく。


パーコレーション転移を材料設計で自由自在に使いこなすにはコツがある。詳細はコンサルティングで個別に請け負うことになるが、未経験で知識が無い場合にはカーボンと高分子1組成の単純な2元系のシステムでも隘路にはまる。


その結果、添加剤を加えて制御しようと試みる。パーコレーションに限らず材料のシステムは成分が増えれば増えるほど複雑になる。そもそも高分子という材料は多成分系である。そこへ全く構造の異なる物質を添加すれば見かけ上改善されても隠れた問題のために商品化で苦労することもある。


実際に問題解決を依頼されたケースでは、高分子AにカーボンXを添加して検討していたが抵抗が安定しないので高分子Bも加えて制御しようとした。2割ほど偏差が小さくなったが仕様に入らない。そこでXよりも微粒子のカーボンYを添加して凝集させようと試みたところ偏差が2元系よりも大きくなった。偏差が小さくなるときもあるので1年間タグチメソッドで最適化を試みたがロバストを上げることができなかった、という内容である。


故田口先生が聞かれたら、それはシステムが悪くタグチメソッドの責任ではない、と明快におっしゃるに違いない。パーコレーション転移の制御にはあたかも機械系のシステムのごとく最初にある程度の設計が必要である。カーボンの選択もその一つであるが、そのコツを書いた教科書や文献が無い。論文では現象の解説はあるが、解決方法を書いていない。


パーコレーション転移の問題は電気抵抗に限らない。実はフィラーを高分子に添加して力学物性を改善しようとするときにも現れる。しかしフィラーによる力学物性の改善は、せいぜい10倍程度なので電気抵抗のように100倍の偏差など生じない。それで問題になっていないだけである。


パーコレーション転移の科学は単純化されたモデルでうまく説明できるが、全ての材料システムに当てはめた科学理論、すなわち問題が発生したときに必ずこうすれば解決する、という理論はまだ無い。奥深い内容を含んだ技術の問題である。しかし、技術としてこうすれば良い、という経験則は存在する。ご興味のある方はご相談ください。


現在パーコレーション転移シミュレーションプログラムを作りながら学ぶPython入門セミナーの受講者を募集中です。

PRセミナーについてはこちら【無料】

本セミナーについてはこちら【有料】

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.12/25 技術の伝承における体験の重要性

技術の伝承のために体験が不可欠である。どのような技術でも体験無しに伝承することは難しい。もし体験をしないで伝承可能な技術があったとしたらそれはすべて科学的に解明された万民が認める公知の技術か、あるいは大した技術ではないのかどちらかだろう。科学のおかげで科学で説明できる技術は論文で伝承可能である。しかし、技術の中には科学で解明されていない内容が含まれる場合もある。その部分を伝承するときに文章だけではうまく伝承できない。

 

技術の伝承のために何故体験が必要なのか。例えばパーコレーション転移という数学で原理が解明された現象を化学の世界で活用しようとするときに、未だパーコレーション転移は化学の分野で科学的に全てが解明されていないので、技術の伝承が文章だけでは難しくなる。

 

どのように難しくなるのか。例えば技術的に完成したパーコレーション転移制御による帯電防止層を体験無しに文章で説明しても伝わらず、何か品質問題が発生したときに文章で伝承された人が技術的には品質問題解決を不可能という誤った結論を出す、ということが起きる(これは実際に起きた問題であるので少し書きにくいが)。

 

その場合に、化学の世界におけるパーコレーション転移という知識と数学における成果を結びつけて品質問題の原因仮説を設定できるにもかかわらず、そのような行動をとろうとしない。化学の世界におけるパーコレーション転移について科学的に解明されていないため、自分が経験上獲得した他の知識と品質問題を結びつけて原因仮説を設定し、論証しようとするためおかしな事が起きる。

 

すなわち文章で伝承された技術は次世代の人の体験レベルまで結びついた理解が無い限り、技術がうまく伝承されない。難解な技術、というものはほとんどの場合科学的な解明がなされていない部分が多く残っている。このパーコレーション転移という現象もコンピューターの中で制御因子は解明されているが、化学の世界では未解明の因子が存在する。

 

この例で言えば導電性粒子表面とバインダー高分子の濡れの問題はすべてが解明されているわけではない。濡れの問題については界面活性剤の経験を数多く積んでいるためにすぐに界面活性剤を用いた仮説をアイデアとして考える傾向にある。バインダー高分子のコンフォメーションやその高分子が結晶化していた場合などに濡れが変化するという知識や経験をしていないためだ。その結果、界面活性剤など持ち出さなくても解決できる問題を界面活性剤で解決しようとしてパーコレーション転移の制御因子を増やし問題を難しくしたり解決できなくする。

 

 

特公昭35-6616という特許は酸化スズゾルを世界で初めて写真フィルムの帯電防止層として用いた技術だった。しかし酸化スズの物性やパーコレーション転移に関する数学的解明もされていなかったため、1991年にその特許の偉大さの再発見がされるまで誰もその技術の重要性を評価し理解できなかった。その特許を出願した会社においてさえ技術の痕跡すら無かった。

 

ライバル会社はその技術を否定するような特許を多数出願していた。写真フィルムには無色透明の酸化スズゾルが最も適しているのに青みを帯びたアンチモンドープの酸化スズが良い、という特許を出願していたのである。写真フィルムの色材以外の材料は無色であることが一番良いのは素人にも理解できるが、技術が伝承されていないとこのような不思議なことが起きる。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.12/20 高分子の相溶(4)

PPSと4,6ナイロンについてOCTAでχを計算すると0.0006となる。限りなく0である。だからPPSと4,6ナイロンの相溶実験の動機になる。これは高分子の研究者であれば常識的な研究動機である。6ナイロンでは0.14となり非相溶系と予想される。この数値から相溶性を期待する研究動機はアカデミアで起きない。

 

しかし、アペルとポリスチレンの相溶を実現した着眼点から現象を眺めると、フローリーとハギンズが見ていた世界と異なる情景が見えてくる。E.S.ファーガソンによればこれを心眼と呼ぶそうである。アカデミアで心眼の話を行うのは気が引けるかもしれないが、技術者がこの心眼を十分に活用するとイノベーションを引き起こすことができる。換言すれば科学で解明されていない現象でも心眼で成功が見えたならば技術者はそれを実行すべきである。

 

東工大扇沢研究室で行われた実験は、相溶の窓が開かれるところを直接観察する実験である。すなわち二枚の円平板でPPSと4,6ナイロンの混合物を挟み、回転させながら温度を上げて透明になる現象をビデオカメラで直接観察できる装置で実験を行っている。論文では、310℃の時、円板の周辺で透明になる現象が観察された、とある。

 

この研究レポートでは、310℃で相溶の窓が開いた、と結論づけられているが、剪断速度が関係しているとも書いている。すなわち温度だけで論じられるχパラメーターであるが、相溶という現象に剪断速度が関係していることを示す、すなわちフローリーハギンズ理論で説明されていない相溶パラメーターの存在を示す価値あるレポートである。

 

このレポートの結果とアペルとポリスチレンが相溶した結果と重ね合わせると、プロセシングで高分子を相溶させるアイデアが見えてくる。プロセシングで発生する結晶相についての研究は存在するがアモルファス相の研究はない。

 

結晶相についてはシシカバブというトルコ料理の名が付いているラメラからできた有名な結晶がある。学生時代にシシカバブの意味を質問したら回答できなかった高分子合成の教授がいたが最近は写真の入った教科書も存在する。そこまで結晶については丁寧に説明されているが高分子アモルファスについては自由体積ぐらいであまり研究も進んでいない。相溶は高分子の場合アモルファス相で生じる現象である。

 

温度が高く剪断速度が速い樹脂の流動状態のアモルファス相がどのようなものか知らないが、この条件で急冷処理したPPSは何故かアモルファスとして得られる。そしてそのアモルファスの密度は結構低いのである。すかすかの状態で混練されたときに4,6ナイロンだけでなく「4,」がとれた6ナイロンが相溶しても良さそうである。「4,」が取れるといっても熱分解するわけではなくPPSと6ナイロンをカオス混合するのである。

 

カテゴリー : 一般 高分子

pagetop

2013.12/19 高分子の相溶(3)

合成技術をもったあるメーカーにお願いし、様々な重合条件でポリスチレンを合成して頂いた。すなわち合成条件が変わればポリスチレンの重合様式も変わり、安定なコンフォメーションに違いのあるポリスチレンができるのではないか、と期待した。これをアペルに混練すれば、アペルのアモルファス相で安定に相溶する、と仮説を立てた。

 

重合条件については300程度まで頑張ってみようと、気合いを入れて取り組んだ。運良く16番目に重合されたポリスチレンをアペルに混練した時に透明になった。すなわち15番目までは不透明な混練物しかできなかったが、ポリスチレンを30wt%配合しても透明になる混練物が16番目の重合条件で合成したポリスチレンでできたので、それを射出成形しテストピースを作ったところ透明になった。

 

このテストピースを加熱すると面白い変化が起きた。ポリスチレンのTg付近でテストピース全体が白濁し、アペルのTg以上ではまた透明になったのだ。また、白濁になる過程を見ていると、テストピースのゲートに近いところから白濁が始まり、樹脂流動の様子がうかがわれるように全体が白濁してゆくのだ。美しい光景である。

 

300の実験を覚悟して16番目にできたので相当運が良い、と思った。運が良い時にはよいことが重なるものである。写真会社がカメラ会社と統合し、PPSと6ナイロンの相溶を検討できるチャンスが生まれた。ポリオレフィンとポリスチレンの相溶実験は、窓際の席になった時に何か面白いことができないか狙って行った実験であるが、PPSと6ナイロンの相溶はフローリーハギンズ理論から誰にもできないと思われるが、しかし社業へ大きく貢献できる仕事である。

 

サラリーマンとして初めて単身赴任を経験するチャンスでもあった。ゼオネックスについてもアペル同様その問題点を深く調べたかったが、PPSと6ナイロンの相溶に興味が惹かれた。東工大扇沢研究室からPPSと4,6ナイロンの相溶実験の論文が発表されていた頃でもある。

 

PPSと4,6ナイロンではχは0になるが、6ナイロンではχは0.14程度になり、これをコンパチビライザーを用いずプロセシングで相溶させてやろうと考えた。成功できればアカデミアの先を行くことになる。

カテゴリー : 一般 高分子

pagetop

2013.12/18 高分子の相溶(2)

高分子ガラスには、DSCを測定した時にTgが現れないことがある、と昨日書いたが、不思議な現象ではないのだろうか。無機材料では、アモルファス相でTgを持つ物質をガラスという、と明確に書いてあるが、高分子ではすべてTgを持っている前提になっている。そのためこのTgを示さない高分子アモルファス相について、ほとんど研究が進んでいない。

 

例えばAとBの高分子を相溶させたときに、Aの高分子のTgとBの高分子のTgが一つになった時にAとBの高分子は相溶している、と判断され、電子顕微鏡で一相になった様子を観察した結果が示されている。粘弾性で測定されるTgも同様に一つになる。またTMAで観察されるTgも一つになり、アモルファス相でAとBがガラス相で一相になっている、と同定できる。

 

それではTgが観察されない高分子のアモルファス相はどのような状態だろうか。やはりガラス相と同等に扱うべきという考え方で少しトリックを使いTg変化をチャートにだすような測定方法で良いのだろうか。それとも無機材料のようにガラスではなく単なるアモルファス相と扱うべきではないだろうか。高分子の相溶現象はアモルファス相で生じるのだが、このアモルファス相の理解を進めなくてもよいのだろうか。

 

光学用樹脂として有名なアペルやゼオネックスは非晶性樹脂として知られているがこれはウソである。ただしこのウソは今年話題になったホテルの食材偽装と性格は異なり、材料を供給しているメーカーの技術水準を問われる問題だが、少なくとも10年前のアペルやゼオネックスはある条件で結晶化させることができた。そしてわざわざアペルやゼオネックスの結晶を作って営業担当にこの問題の回答をお願いしたがいずれも回答を頂けなかった。この2つの樹脂には、世間であまり知られていない技術に関わる問題を引き起こす物性が隠れている。そのため品質問題が起きても迷宮入りとなる。

 

アペルを非晶性樹脂として扱う技術上の問題については、とことん実験を行い理解を深めた。ゼオネックスについてもその問題の幾つかを実験していたが、PPSと6ナイロンの相溶を扱うようになって時間が無くなり、非晶性樹脂とうたっている怪しいベールの全てを剥がすことができなかったが、結晶化させることができたのでこれも結晶性樹脂といってもよいと確信している。そしてその結果ゆえに引き起こされる問題をゼオネックスもアペル同様に内在している。

 

さてアペルであるが少なくともそのアモルファス相(非晶相)は2つある。一つのアモルファス相はTg以上で膨張する相であり、他の相は収縮する。そしてこの比率は射出成型条件で変化する。そして時々起きる偶然がTMAで観察される見かけ上のTgを30℃以上も引き上げる。TMAのTgは高く観察されるが面白いことにDSCのTgはほとんど変化しない位置に現れる。

 

アペルのアモルファス相の不思議な現象からアペルにポリスチレンが相溶するのではないか、と考えた。理由を簡単に説明するとフローリーハギンズ理論の見かけのχが大きな組み合わせでもコンフォメーションを安定化させる錠と鍵の関係になれば、自由エネルギーが下がり(χが小さくなり)相溶する可能性がある、と考えた。これはフローリーハギンズ理論で説明されているようなモノマー単位の親和性ではない立体の安定化の要請から生じる現象である。

 

 

 

カテゴリー : 一般 高分子

pagetop

2013.12/17 高分子の相溶(1)

2種類の高分子を混合したときに混ざって均一になるのかどうか、すなわち相溶するのかどうか、という問題は高分子溶液論から導かれたフローリー・ハギンズ理論(FH理論)で論じられχが0となるときに相溶する、といわれている。また、それぞれの高分子のSP値をモノマー構造から計算して、SP値が近い高分子は相溶しやすいとか議論したりする。

 

高分子の相溶性だけでなく、何か添加剤を高分子に添加したいときにその分散性を事前評価する場合にも用いられている。添加剤についてはカーボンブラックやチタンホワイトなどの粒子表面のSPなども提案され、微粒子が高分子に分散する状態を表現することに成功した、という論文もある。

 

ところでχパラメーターやSPは溶液論の延長から導き出された値である。これらのパラメーターを用いる高分子加工分野の大半は高分子を無溶媒で混合するプロセスであり、FH理論がそのまま当てはまる、と考えてよいのだろうか。ゴム会社に入社したときに最初に頭に浮かんだ疑問である。

 

高分子の相溶は高分子のアモルファス相(結晶になっていない部分、非晶相)で起きる現象である。高分子相溶系で結晶が生成し始めるとスピノーダル分解で2相に分離することはよく知られている。

 

ところが高分子のアモルファス相は無機のアモルファス相と少し異なる。また、アモルファスである無機ガラスと似ていると言われているが、やはり少し異なる。一応高分子のアモルファス相にもガラス転移点(Tg)が観察されるので、アモルファス相という言葉よりもガラス相という言葉が高分子の教科書で使用されている。

 

アモルファス相にはTgを持つ相と持たない相があり、Tgを持つ相の物質をガラスと呼ぶことはガラス工学の教科書に書かれているが高分子の教科書には書かれていない。すなわちガラスであるためにはTgを持っていなければならず、Tgは高分子の基礎パラメーターとして常識となっている。

 

ゴム会社に入社して、からかわれた思い出がある。今ならばいじめに近いが、ある高分子の示差熱分析(DSC)を測定していたらTgが出ない。これは新発見、と驚いたら、DSCの測定方法としてちょっとしたテクニックが知られており、そのテクニックを使用するとどのような高分子でもTgが出ると教えられた。しかしこのちょっとしたテクニックを知っていることは高分子研究者の常識だとからかわれた。

 

この思い出のおかげで高分子ガラスに疑問を持つようになった。大学院の生活は無機材料の、それもガラスも扱っている研究室でリン系の材料の合成研究をしていた。その時は、Tgがあるのか無いのかはガラスの判定基準であった。しかし、高分子の世界では、姑息な手段でDSCのチャートにTgがわざわざ現れるように測定するのである。これは科学としてインチキである。ただ、高分子のアモルファス相はガラスという常識があるからTgの無いDSCチャートではかっこつかないから姑息なテクニックが生まれたようだ。

 

 

カテゴリー : 一般 高分子

pagetop

2013.12/14 否定証明

特殊な構造をした半導体微粒子を絶縁オイルに分散すると電気粘性流体(ERF)ができる。1年以上前にこの欄でその開発の様子を書いたが、このテーマを担当するきっかけとなったのは、ERFをゴムに封入して用いたときにゴムの添加物がERF中に抽出されて增粘する、という問題が発生し、その解決方法が見つからなかった時だ。

 

このような問題は界面科学の問題である、と科学の知識がある方は現象を見てアイデアを思い巡らす。ERFの開発を推進していたメンバーもその様に考えて市販の界面活性剤を科学的に分析しながら增粘を抑える対策として検討を進めた。しかし、增粘を抑える界面活性剤が見つからなかったので、界面活性剤では解決できない、という証明を沿えて、それ以外の対策方法の探索を進めていた。

 

一人で高純度SiCの開発を続けていた立場では、このようなときにすぐにネコの手として引っ張り出される。そしてじゃれる程度の仕事を手伝うことになる。企業で研究開発を担当された方はこのような立場を理解できるのではないかと思う。じゃれているだけではつまらないので、アンダーグラウンドで独自のアイデア実験を進めたところ3日間で解決策が完成した。

 

ところがその解決策は、プロジェクト正規メンバーが不可能という結論を出した方法だった。すなわちERFの增粘を抑える界面活性剤が見つかったのだ。それも否定されていた構造に近い材料だった。納期が迫っていた開発だったので一応採用されたが、一部のプロジェクトメンバーから反感を持たれたのは確かである。

 

その結果ゴム会社を退職することになるのだが、科学的な方法で進める研究開発で陥りやすい否定証明については、イムレラカトシュという哲学者が「方法の擁護」という著書の中で、科学的方法で完璧にできるのは否定証明である、と述べている。

 

すなわち、できない理由を科学的に証明することは易しいのである。技術開発を科学的に解析しながら進めていて失敗が続くとこの罠に陥る。技術開発では「モノ」を創りださなければいけないのだが、頭の良い人ほどこの罠にはまる。この罠にはまらないような研究開発を進める方法の一つが弊社の研究開発必勝法である。失敗続きで家族に迷惑をかけているが、今夜は必ずおいしいオカラハンバーグを完成させる。

 

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.12/13 肉ダンゴをふっくらさせるコツ

先日12月6日付けの産経新聞の生活欄に「肉団子をふっくらさせるコツ」というのが載っていたので、昨日おからを紹介させて頂いた。水だけを入れた場合とおからを使用した場合とでは栄養価が異なる。また、1個あたりのカロリーも新聞に紹介された方法よりおからを使用した方が下がりヘルシーな肉ダンゴとなる。歯の悪い老人食としては新聞に紹介された肉ダンゴよりも柔らかくヘルシーである。

 

今週紹介したように肉ダンゴはうまくできたが、肉ダンゴを大きくしたハンバーグになると難しさは数倍になる。すなわちおからに水分が多量に含まれているので焼き上げたときに密度が下がり、ハンバーグの食感が失われる問題と、ダンゴと異なり大きくなるので少々焼きづらく調理の難しさという新たな問題が発生した。

 

肉ダンゴの配合に近い処方でもハンバーグ形状のものはでき、味覚にうるさくない老人にはそれで十分かもしれない。ところが鍋種の場合には柔らかさをホクホク感でごまかせるが、ハンバーグは食べている間に温度が下がり、何かスポンジを食べているような食感になる。牛スジをダシにして作ったスープでおからを処理しても、この食感のために倍増した味覚が生きてこない。食感の重要性を改めて認識した。

 

ところが食感までおからを使用して制御しようとすると難易度が高くなる。現在モスバーガーレベルを目標に開発を続けているが、この開発で最も重要なのは毎週土曜日の食卓がおから料理となる家族の理解である。この2ケ月我が家の食卓は毎週おからハンバーグである。このような状態になると食感よりも味を飛躍的に向上させる技術を導入した方が良い。

 

これは研究開発と同じで、ゴールを他社並にして開発しているとそこそこの製品しかできないが、革新的な新たなコンセプトで飛躍的なイノベーションを行い、ダントツトップを狙った開発を行うと多少難有りでも商品にまとめ上げることができれば市場に受け入れられるのである。研究開発を理解していない女性議員がスーパーコンピューターの開発で「目標を2番にしたら」と発言したのは有名であるが、市場をコントロールできる立場の企業であればそのような開発でも許されるかもしれない。

 

しかし、大抵の日本企業はダントツトップを狙う研究開発をしなければ市場で生き残れない時代である。目標設定が企業の生存を左右する状態で、ほとんどの日本企業は研究開発を続けなければいけない。しかしバブル期にこれを忘れた企業も多く、なかなかバブル崩壊から立ち直れなかった。自分たちの技術を乗り越えるだけでなく、否定するぐらいのイノベーションが日々の研究開発で求められている。

 

おからで実現できた肉ダンゴをふっくらさせるコツをすてるアイデアがおからハンバーグの開発に必要だ。おからを使った場合には、おからに含まれる水分のためにどうしてもふっくらとしたハンバーグになってしまう。またハンバーグにはタマネギを入れるので水分がさらに多くなる。従来の発想を破壊するようなアイデアが無ければおからハンバーグの完成は無い。新たな気持ちで明日の夕食の処方アイデアを練っている。果たして明日家族の感動した顔を見ることができるのか。失敗した状況を考えるよりも成功したときの喜びを期待することが研究開発のコツである。

カテゴリー : 一般 連載 高分子

pagetop

2013.12/08 成形技術と混練技術

加硫ゴムを扱う会社では、コンパウンドを自前で設計しているケースが多い。例えばタイヤ会社でコンパウンドを外注している企業は皆無だ。しかし、樹脂成形メーカーはコンパウンドを外注している企業がほとんどである。

 

それぞれにメリットデメリットがあるが、汎用樹脂のような高い混練技術が要求されないコンパウンドでは成形工程と混練工程が異なる企業の分業体制でもかまわないが、高度な混練技術が要求される成形体、すなわち成形体の物性が混練技術で左右されるようなケースでは、混練工程から成形工程まで一貫生産した方が好ましいし、差別化技術となる。

 

タイヤという商品は、混練技術も成型技術も高度なレベルを要求される商品である。その品質を維持するために両者の研究スタッフを抱えていなければ事業を展開することが難しい。しかしポリエチレン容器の成形業者は、成形機を備え付けて外部から安価なコンパウンドを購入すればいつでも事業を始めることができる。すなわちタイヤ事業は技術的な参入障壁が高い事業だが、汎用樹脂の射出成形事業は技術の参入障壁が低い事業だ。その結果、後者では製品の価格競争となるが、前者では市場の価格決定権は技術の高い企業にある。

 

また、複合電子写真機の開発担当となって知ったことだが、成形業者は樹脂のサプライヤーの技術サービスに依存しているケースが多い。成形業者のコア技術は金型技術にあるようで、他の成形業者が真似できない安価で高機能な射出成形体を製造することがミッションとなっているようだ。その結果、樹脂成形業界はコンパウンダーが成形業者の技術をサポートできる程度の研究開発スタッフを抱えている。

 

5年間日本のコンパウンドメーカーと交流して驚いたのは、成形事業者を如何に納得させるのか、という技術を一生懸命開発している。本来樹脂を丸め込んでうまく混練するのがコンパウンダーのミッションのはずだが、多くのコンパウンダーは、如何に現在供給している樹脂をそのまま使わせるのかという技術開発に終始している。少し混練条件を変えるだけでも性能が上がる可能性があっても現在の混練条件を維持しようとする。

 

数t/時間の量産技術で市場に供給しているのだから一人一人の顧客に対応出来ない、というのがその理由のようだが、その結果混練技術開発の進歩が止まったようだ。このような市場に新たな混練技術で参入したらどうなるか。特にABSやPC/ABS、TPEの分野では2成分以上のポリマーをブレンドする必要がある。

 

例えば、二軸混練機を改造しカオス混合可能な装置で混練したPC/ABSでは、ナノオーダーの均一な高次構造が観察されたが、市販品は構造のサイズが10倍以上、あるいは100倍以上異なっている場合もある。またゴム相の分散状態も市販品は不均一である。コンパウンドの高次構造が新しい混練技術では既存の商品のそれと明確に異なり、樹脂のレオロジー特性も異なっている。このような技術を導入したコンパウンダーが市場に現れたら、既存のコンパウンドメーカーは今までの混練技術に対する考え方を見直すはずだ。

カテゴリー : 一般 高分子

pagetop