活動報告

新着記事

カテゴリー

キーワード検索

2013.03/01 ポリオレフィン系ポリマーの難燃性について

ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン系ポリマーは難燃性が低く、LOIが18.5前後である。ポリスチレン(PS)もこのカテゴリーに入れる場合も多い。難燃性の観点から、PSをポリオレフィンに分類するのは妥当と思います。

 

すなわち、ポリオレフィン系ポリマーが燃焼するとポリマーの骨格を構成している主鎖が熱分解し、低分子量化するだけでなく、ラジカルと呼ばれる反応性の高い状態の物質を生成するため、急激に熱分解が進行することになる。そこへ空気が入れば急激な酸化反応、すなわち燃焼となります。

 

ポリオレフィン系のポリマーについて自己消火性の難燃性を付与する技術は難燃剤を添加する方法以外に存在しないようだ。「ようだ」としたのは、実験をしたことはないが、LOIが低い他の材料で難燃剤を用いずに溶融型でUL-94V2を達成し、商品化したことがあるからです。同様の方法で自己消火性レベルの材料ならば設計できる可能性が高いと思っています。

 

難燃性のポリオレフィンのコンパウンドには難燃剤が少なくとも5%以上含まれています。難燃性のポリオレフィンという商品には100%単一ポリマーで構成されているコンパウンドが存在しないことを示しています。耐光性や滑り性その他何か機能性を付与された場合には、ポリマーの成分は90%以下になります。

 

ゆえに力学物性の良好な難燃性ポリオレフィンを設計する場合には、難燃剤の使用量を低減できるポリマーアロイで材料設計した方がマトリックスを構成するポリマー成分が多くなるので射出成形時の外観などの他の品質の安定化のためにもよいと思っています。

カテゴリー : 高分子

pagetop

2013.02/28 ポリスチレンの難燃化

ポリスチレン(PS)は、側鎖にベンゼン環がぶら下がった形の分子構造を持っている高分子です。ベンゼン環が入っていますと、一般にLOIは高くなりますが、側鎖基にぶら下がったPSでは、ベンゼン環を含まない高分子と大差はなく、18.5前後です。

 

ゆえにPSを難燃化して空気中で自己消火性にするためには、リン酸エステル系難燃剤が用いられる。しかし、リン酸エステル系難燃剤を添加した場合には、可塑剤として働くので、弾性率等の物性が低下する。アンチモン系の難燃剤も過去に検討されたが、環境への配慮から最近ではリン酸エステル系難燃剤を使用するケースが多い。

 

高い難燃性を得たい場合には、難燃剤を大量に添加することになり、弾性率だけで無く靱性なども低下する。線形破壊力学によれば弾性率の低下とともに靱性は向上するが、添加剤が入ったときには、その添加剤が形成するドメインの大きさで靱性が影響を受け、このように靱性が低下する場合がある。

 

物性低下を最小限にして、高い難燃性を得るためにはどうするか。このような問題解決には、ポリマーアロイの技術が使用される。すなわち難燃性の高い高分子を添加してマトリックスの難燃性レベルを持ち上げてから、難燃剤の検討を行うのである。このとき難燃剤の分散状態も変化しているので、その効果の検討には注意を要する。すなわちプロセス因子の寄与も大きくなるのである。

 

PSの場合には、ポリフェニレンエーテル(PPE)がよく使用される。これはPSとPEがうまく相溶系のポリマーアロイを形成し、どのような比率でもほどよい物性が得られるからである。面白いのは、PS/PPE/難燃剤の3元系の検討であるが、難燃剤の構造とPS/PPEの比率で難燃剤の添加量と難燃性が変化することである。PPEはPSよりも価格が高いので、コストパフォーマンスを狙うときには、弊社にご相談ください。

カテゴリー : 高分子

pagetop

2013.02/26 高分子とセラミックス

高分子材料とセラミックスは、物質としてかけ離れた材料に見えますが、力学物性の発現機構に似ているところがあります。特に結晶化度の高い樹脂の脆さなどはセラミックスとよく似た挙動をとります。

 

力学物性を専門にやっておられる研究者には叱られるかもしれませんが、商品に構造材料を組み込むときには、セラミックスも高分子材料も同様に扱った方が安全です。即ち金属材料に比較して品質管理が充分に行われなかったときのペナルティーは大きいです。

 

金属材料には錆びとか外観上の問題でセラミックスや高分子よりも品質問題を引き起こすリスクが高い因子もありますが、少なくとも構造材料として用いたときの力学的信頼性は、セラミックスや高分子よりも高い。

 

学生時代には、セラミックス<<高分子<金属の順序で構造材料としての信頼性を学びましたが、1980年代のセラミックスフィーバーでかなりセラミックスの技術革新が進みました。高分子材料につきまして信頼性を向上できるような革新的技術は、複合材料以外ありません。ポリマーアロイを革新的な技術にあげても良い面はありますが、実務の観点では合金の信頼性に及びません。実務で射出成形や押出成形を経験し、高分子材料のコンパウンドから成形プロセスに至る品質管理の重要性を痛感しています。

カテゴリー : 高分子

pagetop

2013.02/25 高分子発泡体の難燃化

高分子発泡体の難燃化は、バルクに比較し密度が低く燃えやすいので難燃化は難しい。バルクと発泡体では、LOIはほぼ一致するが燃焼速度が異なるので、燃焼規格では異なる評価結果になる場合が多い。

 

あまりにも低密度であるとLOIもうまく評価できない場合が存在するが、23以上であればバルクも発泡体も評価結果が良い一致を示す。炭化型でLOIを24以上にする材料設計が可能であれば、発泡体でもうまく自己消火性にできる。21-24程度であると、炭化型でもうまく火が消えず、バルクでは自己消火性になるのに発泡体では自己消火性に材料設計するのに苦労する場合がある。

 

もしドリップが許されるならば、炭化促進型の設計をあきらめ、溶融型で設計した方が容易に自己消火性にできる。溶融型材料設計の場合には、バルクよりも発泡体の方が簡単である。

 

もし炭化型で燃焼速度も抑え自己消火性にしたい場合には、LOIは、少なくとも23以上にしなければならない。24以上であれば、かなり低密度の高分子でも自己消火性にできる。材料によっては21でも多くの難燃性規格で自己消火性になる場合もあるが、発泡体ではLOIと燃焼規格の自己消火性と一致しない場合が多いので苦労します。

カテゴリー : 高分子

pagetop

2013.02/20 高分子材料の成形技術

高分子材料の最も多い用途は、賦形して用いる用途でしょう。おそらく薄膜も形状の一つとして考えますと7割以上は何らかの形状で用いられていると思います。残りはオイルなどの液体やコロイドとして用いる用途です。薄膜形成方法は多種多様ですが、円柱とかブロックとかバルク形状を形成する場合には金型を用います。この時、金型へ押し出す場合と金型から押し出す場合、またただ高分子材料だけを押し出す場合と空気などその他の物質と一緒に押し出す場合との4通りに分かれます。

 

技術書により表現は異なりますが、金型へ押し出すのか金型から押し出すのかの違いは重要です。ここで前者にはプレス加工やキャスト製法も含めて考えます。すなわち、製品として出来上がる時に金型の中で形ができるのか、金型から出て形ができるのかの違いは、技術上大きい。また難易度はケースにより異なるが、材料技術の視点で見ると後者が難しいと感じています。すなわち前者は金型表面で製品の外観が規制されますが、後者はいってこいの世界で金型から出た後のレオロジー挙動で外観が決まります。

 

前者も後者も金型技術のカテゴリーでとらえられ、材料の研究があまり進んでいません。むしろ現場のノウハウとして蓄積されているのではないでしょうか。外観の問題は薄膜をコーティングで形成するときにも問題になります。塗布液の調製が十分できていない場合に規則正しい波状の欠陥が出たり、はじきなどで目玉状の欠陥ができたりと悩まされます。塗布の場合は材料の工夫へすぐに視点がゆきますが、押出成形では金型技術として扱われる場合が多いようです。

 

確かに押出成型ではサイジングダイも含め金型の工夫で多くの問題を解決できますが、材料で対応しなければ改善できない技術が多いのも事実です。材料の原因を金型で対応しているケースを見ますと感動します。

 

ある問題が発生してその解決手段が何通りもある場合に何を選択するかは問題解決する人のスキルで決まるようですが、本来はコストやロバストの観点から決めてゆくべき問題でしょう。

カテゴリー : 高分子

pagetop

2013.02/18 未来技術

3.11で世の中は大きく変わりました。とりわけ原子力エネルギーに対する考え方は、180度の変化です。国民のだれもが未完成の技術で商用運転を行っていた実態を知ってしまいました。福島原発の事故は、天災で始まっていますが、事故の状況について報じられた内容を見る限り、商用運転してはいけない技術でした。

 

現在販売されている家電製品のマニュアルを見ていただけばわかりますが、注意書きには起こりえないことまで想定された注意が書かれています。しかし、原発の事故対策は発生確率で低い場合には対策を行わない、という考え方で設計されていたのです。また事故後の対応においても、電源車との接続において、コネクターが合わず電源供給できなかった、とか、ベントにフィルターがついていなかった、とか、およそ商用運転されている商品として怪しい状況が報じられています。さらに、いまだに使用後の燃料棒の処分方法が決まっていない、というありさまです。家電のように家電リサイクル法で商品そのもののリサイクルが義務づけられている時代に、原料の処分法すら決まっていないのです。原発を商品として見た場合に、再稼働を議論するときには、実験運転を行うという前提で議論する必要があります。

 

原発がこのような調子ですから、未来技術としてエネルギー関連技術が花形産業を生み出す、と考えました。すでに太陽光発電や風力発電が立ち上がっていますが、ごみ発電技術は経済的に可能性が無いのでしょうか。かつて名古屋市長がゴミの分別回収で政府に苦言を呈したことがありました。細かい分別回収をしてきたのにそれが無駄になったからで、さっそく名古屋で有識者が集められてゴミのリサイクルではどの方法が良いのか議論されました。その結果サーマルリサイクルが最も良い、との結論でした。熱エネルギーとして取り出せるならば発電は容易です。

 

ごみ以外の燃料では、ジャトロワや藻、チップなどのバイオエネルギーの経済的生産技術が立ち上がる可能性が見えています。藻の場合には、ガスタービンを工夫して藻をそのまま燃焼できる技術を開発すれば最も経済的に発電ができます。光合成で藻を育てるのは琵琶湖のような湖を使うことができます。藻の繁殖力と藻の回収速度をバランスさせればよいわけです。藻と水の分離では、熱エネルギーを使うのではなくフィルターワークで十分です。

 

集中発電の方法以外に分散発電技術も出てきました。エネファームなどの燃料電池で、ガスの供給ラインを使って発電するシステムです。電気代が高騰していますから、経済的に十分釣り合うようになってきました。また、スマートグリッドへの移行も可能です。太陽光発電や風力発電、水力発電、地熱発電など様々な発電技術に可能性が出てきました。このような分散発電では蓄電池が重要になってきます。また高電圧を制御する必要から、パワートランジスタのニーズが高まります。

 

電気自動車のような移動体に電気を供給するシステムの開発も重要です。わざわざコネクターをつないで電気供給する方法では利便性が悪いです。また高速充電システムも必要になってきます。電気の供給であれば無人化も可能で、ちょっとしたスペースがあれば電気を供給できるような、それこそ駐車場のどこでも駐車中に電気供給できるようなインフラにすれば一気に電気自動車が普及するように思います。新しい電気電子デバイス以外に膜技術も重要です。従来の熱エネルギーを用いた分離方法から膜分離へ移行する可能性があります。膜分離技術は省エネ技術です。

 

家庭内の創エネ技術も太陽光発電以外に登場する可能性があります。家庭内には発熱製品や振動製品がたくさんあります。そのような発熱媒体や振動媒体から電気を回収するシステムです。コストが問題になりますが、材料技術が進歩すればぺロブスカイト系の材料で経済的な熱電変換素子ができるように思います。

 

こうしたエネルギー関連の未来技術はまだまだたくさんあり、具体的なアイデアもあります。これらを公開する企画を考えていますが、事前に情報を入手したい方はご連絡ください。

カテゴリー : 一般 電気/電子材料 高分子

pagetop

2013.02/15 ブリードアウト

長期間使わなかったビニール製品あるいはゴムなどで表面がべとべとしたような状態になった経験はないでしょうか。これは、高分子製品で特にやわらかい風合いの製品で多く見かける、低分子化合物が表面に浮き出てくるブリードアウトという現象です。固い樹脂製品でも起きる現象です。

 

実用化されている高分子材料の製品には必ず何か添加剤が入っています。カメラのレンズやDVDプレーヤーのピックアップレンズのような光学樹脂にも必ず添加剤が入っています。その添加剤と高分子との相性が悪い場合には早く表面に浮き出てきます。相性が良い場合でも必ず表面に出てきます。また固い高分子に添加されている場合よりもやわらかい高分子に添加されている場合の方が早く出てくる傾向にあります。

 

高分子に添加された低分子化合物が表面に浮き出てくる、このブリードアウトという現象は、高分子材料では宿命のような現象で、添加剤を高分子に反応させない限り防ぐことはできません。他の添加剤と組み合わせてブリードアウトする速度を遅らせることはできますが、完全に防ぐことはできません。

 

そのためブリードアウトという現象を目立たせないように、あるいはブリードアウトで商品の品質が損なわれないようにする技術がいくつか開発されています。同じ材質のビニール製品でもべとべとするものや、しないものがあるのはそのためです。高い技術がその差に隠されているのです。高分子材料技術にはこのような目立たない技術も存在します。

カテゴリー : 高分子

pagetop

2013.02/14 難燃剤の分散

樹脂の混練は固体分散が基本で、液状物の添加剤を通常用いない場合が多い。しかし、液状の難燃剤を用いたい場合も出てくる。同等の機能の固体の難燃剤を選択した方が良いが、液状の難燃剤を使うために二軸混練機のサイドフィーダーで対応する場合もある。あるいは、他の添加剤とあらかじめバッチ式分散機でプレミクスを行い添加したりする場合もでてくる。いずれもコストにも関わる問題であり、二軸混練機で樹脂を混練する場合には液状の難燃剤が敬遠されがちな理由である。また、プロセスの問題以外にブリードアウトなど製品においても液状の難燃剤が問題となる場合がある。

 

製品の問題については後日触れますが、本日はプロセスの問題に限定して液状の難燃剤を樹脂に混練する場合について考えてみます。液状の難燃剤を二軸混練機で分散する場合に経験的には、マスターバッチ法で作った高濃度の難燃剤を含む樹脂として添加する方法が良いと思っています。コストでは若干不利になりますが、安定した製品を作ることができます。

 

サイドフィーダーで行う方法もよいですが、マスターバッチ法に比較し、ばらつきが大きくなります。サイドフィーダーの問題は液状の難燃剤に限ったことではありませんが、ペレットのばらつきを生じる原因となっています。L/Dが十分大きな混練機であればよいが、そうでない場合にはばらつきの問題を対策する必要がある。ばらつきの問題を回避するために、できあがったペレットをタンブラーで混合してから、それを1バッチとして扱う場合もある。しかしこれが原因不明の問題を引き起こすことがある。

 

何も市場で問題が発生しなければ、選ばれたプロセスは妥当なプロセスとして採用されるが、二軸混練で樹脂を混練する場合には、分散のばらつきをいつも抱えていると覚悟した方が良い。液状の難燃剤の分散ではそれが顕在化するだけである。二軸混練機の抱えるばらつきの問題を小さくする技術も開発されています。ご相談ください。

 

 

カテゴリー : 高分子

pagetop

2013.02/12 難燃剤とOCTA

樹脂を難燃化するときに一般的な手法は難燃剤を添加する方法です。難燃剤には(1)樹脂に相溶して分散する難燃剤、(2)相分離し分散する難燃剤、(3)固体として分散する難燃剤の3種類があり、それぞれ効果が異なる。

 

同一分子構造の難燃剤で比較することは難しいが、軟質ポリウレタンで実験を行った結果では、予想通りP基準の添加量の順番は(1)<(2)<=(3)である。リンの含有率対LOIのグラフで考察すると、赤燐の形態すなわち(3)で添加した場合には、3-4割ほど(1)の場合よりも多く添加しなければならなかった。しかし、赤燐粒子は9割以上がリンなので全体の添加量は少なくなるが。

 

興味深い結果となったのは(2)と(3)である。(3)と等しくなる場合もあれば(1)と1割前後の差しか生じない場合があった。(2)でも樹脂へ一部相溶して分散していると考えればこの結果を容易に理解できる。しかし(1)と(2)に差が生じるならば難燃剤と樹脂の相互作用を考慮し、難燃剤の選択をしなければならない。

 

ポリマーブレンドの場合にはさらに複雑な結果が予想されるが、OCTAを使用すると最適な難燃剤を選択することができる。SP値だけでもおおよその比較はできるが、温度依存性や各相への分配を考えるとなるとSUSHIが便利である。

 

たった1割前後の節約のためにコンピューターシミュレーションまで持ち出すのか、と思われる方もいるかもしれませんが、難燃剤のコストを考えると1割の節約効果は大きい。高価なエンプラならば難燃剤のコストへの影響は小さいが、kgあたり200-300円程度の樹脂の場合には、半日程度かけてシミュレーションを行うだけの価値はあります。

カテゴリー : 高分子

pagetop

2013.02/08 高分子の混練技術

過去にも高分子の混練技術に触れましたが、混練時に発生する重要な機構として剪断流動と伸長流動が重要です。10年ほど前に推進された高分子の精密制御プロジェクトでは、伸長流動についてかなり研究されL/Dの大きな二軸混練機まで試作された。伸長流動について集中的に研究されたのはナノ構造を達成するためである。剪断流動は混練効率の高さに比べ分散してできる構造の大きさがミクロンオーダーまで、と言われている。過去の実験で混練時間を伸ばしても伸長流動の場合はナノオーダーまで達成できていたが、剪断流動ではミクロンオーダーまでであった。

 

同プロジェクトでは高速剪断についても研究され装置も試作された。一般の二軸混練機の2倍以上の回転数すなわち1000回転以上の高速で混練し、ナノオーダーまで達成できたことになっているが、市販された実験装置で実験を行うと、分子量の低下が著しく使いモノにならない。また実用レベルの装置を作るとなると巨大なモーターが必要になる実用性のない装置でありました。

 

カオス混合という幻の混練技術がある。新入社員時代指導社員に教えていただいたパイ生地の混練方法であるが、伸長流動と剪断流動がうまく組み合わさり、混練効率と達成できる構造の緻密さでこの右に出る混練方法は無い。過去にロール混練をいろいろ工夫してみたが、ロール混練でも同様のことを達成可能であるが、専用装置にはかなわない。ロール混練はバッチ式となり生産性が悪い。

 

混練の世界についてはシミュレーション方法も発展し、かなり解明が進んだが、問題はラボのデータを生産機で実現できないことである。新入社員の時に指導してくださった方は混練の神様のような人で、その方曰く、「実験室でも生産機を使え」であった。周囲が小さなニーダーで実験していたのをしり目にパイロットプラントで豪快に実験をやっていた思い出がある。大きなロールで混練を行うのは恐怖でしたが混練という技術を学ぶには良い体験でした。

カテゴリー : 高分子

pagetop