活動報告

新着記事

カテゴリー

キーワード検索

2013.03/20 PETボトルのリサイクル

2000年前後に環境関連の法整備がされたために樹脂のリサイクルが一気に進んだ。廃品のPETボトルは、価格が上がり現在は1kgあたり40円前後で取引されている。バージン樹脂の価格が130円/kg前後であるから、リサイクル材は約1/3の価格である。PETの原料価格は、90-100円/kgなのでケミカルリサイクルを行うならばかなり厳しい価格構成となる。

 

PETボトルのリサイクル材は主に卵パックなどに利用されている。食品衛生法でボトルtoボトルのリサイクルができないためである。ただしケミカルリサイクルであれば一度原料に戻すのでボトルへの活用は可能である。すなわち現在ケミカルリサイクルのボトルは流通しているが、廃品回収されたPETボトルを粉砕し洗浄しただけのメカニカルリサイクル材のボトルへの転用はされていない、と思っていたら、大手サントリーがメカニカルリサイクルのPET廃材をウーロン茶に導入したという。

 

本技術は、環境大臣賞はじめ幾つかの環境関連の賞を受賞したという。サントリーなのでおそらく多くの科学的な社内テストを繰り返し、メカニカルリサイクルでボトルtoボトルのリサイクルを行っても問題無し、との結論を得たのであろう。しかし一抹の不安はある。実はメカニカルリサイクル材を80%前後含む射出成形用樹脂を開発したときの経験である。

 

あるロットで突然射出成形品にシルバーと呼ばれる故障が多発し、射出成形できなくなったのである。原因を調べたところPETのオリゴマーが大量に含まれていた。バージンPETも含め試しにPETのオリゴマー量を調べてみたらメカニカルリサイクル材で増えていることが分かった。そして品質問題を起こしたロットでは極端に多いわけでは無いこともわかった。

 

すなわちオリゴマー量が多くなるとシルバーが多発すると考えると現象をうまく説明できる。そして、品質問題に出くわすまでは、ただ運が良くてオリゴマー量がすくなかっただけであった。リサイクル材を使用するリスクはここにある。すなわちバージン材では品質管理を科学的に完璧なまで可能だが、リサイクル材でそれを行うのであれば、粉砕された破片一つ一つを管理しなければならないはずである。しかし経済的にそのようなことは不可能である。

 

PETのオリゴマーについて体への影響は現在のところ不明である。また水への溶解も実験室で実験を行う限り問題無しとの結論が得られる。ただ、オリゴマー濃度が表面で高くなったときの試験結果は見たことがない。高分子ではオリゴマーが偏在する現象も起こりえることであり、先ほどのシルバーという故障も同様の現象で起きていた。メカニカルリサイクル材を使用した飲料用PETボトルが出回っていることを知り、最近はメーカーを確認してからPET飲料を購入することにしている。

カテゴリー : 高分子

pagetop

2013.03/19 ポリマーのコストダウン

30年以上前寝具用ポリウレタンの開発を担当した。ポリウレタンは当時kg単価が500円以上したエンプラの仲間である。処方に依存しkgあたりのコストは100円前後変動する。この材料を発泡体にして寝具に応用していた。

 

すでに当時コスト競争になりかけており、高級ブランドを立ち上げても収益が増えない構造になっていた。高級寝具用ポリウレタンはややずっしり感ががあり重い。すなわち発泡密度が高いのである。発泡密度を下げればコストダウンできるのだが、このずっしりとした高級感を出せない。

 

そこで無機フィラーを添加し、重量感を持たせる開発を行った。無機フィラーはkg単価が安い、タルクや炭酸カルシウムが検討された。炭酸カルシウムは最も安価な無機フィラーでkg単価は40円-30円程度であった。タルクはそれより少し高い程度。ポリマーの比重は1より少し大きい程度だが無機フィラーの比重は、3前後の材料が多い。

 

kg単価が500円以上のポリマーに1/10以下の価格の無機フィラーを添加するので確実にコストダウンできる。さらに無機フィラーの比重が高いので、発泡倍率を上げることができ、さらにポリマーの使用量を低減できるので大幅なコストダウンが可能である。

 

しかしうまい話にはリスクがつきもので、この安価なフィラーを使用した発泡体のコストダウンはどこの会社も成功していなかった。一般にフィラーをポリマーに添加すると弾性率が上がるが脆くなる。すなわちポリウレタン発泡体がちぎれやすくなるのだ。フィラーを単純に添加しただけでは、5wt%の添加でも発泡体の引張強度は半分程度に低下した。

 

当時ポリマーに無機フィラーを添加したときの靱性の低下メカニズムは研究が盛んに行われていた時代で、社内には世間よりも数年先のデータが蓄積されていた。ゆえにこの無機フィラー添加による靱性改良の方向は分かっていた。すなわち無機フィラーの粒径を数μm未満にすることと凝集を防ぐことである。前者は分級技術で容易に対応出来るが、後者が難しい。粒径が小さくなると凝集力が増すために分散が難しくなるのだ。

 

分散を上げるには界面活性剤、というのが微粒子分散材料の定石で界面活性剤の探索が唯一の手段になるのだが、発泡体の場合にはセル(空隙)の制御のために界面活性剤を用いるので話がややこしくなる。異なる目的の界面活性剤の併用は技術的難易度が急激に高くなる。添加剤を技術手段として選択できない場合にはプロセシングが最後の手段になる。当時知られていたプロセシングをすべて試したがカオス混合以外に良好な分散手段は無かった。カオス混合の量産技術は当時無かった。

 

なんやかやと苦労しながら技術手段を探し、結局界面活性剤の合わせ技を多変量解析で見つけポリウレタン発泡体のコストダウンに成功した。可能性が有るならば、技術的難易度が高いからといって逃げるより果敢にチャレンジしたほうが解決は早かった。

カテゴリー : 高分子

pagetop

2013.03/18 帯電防止技術と電子写真システム

商品の帯電防止は難しい。導電性を向上させれば帯電を防げるのかというとそうではない。金属でも帯電するからである。すなわち静電気は電気をためる条件が揃うとそこに滞留する現象で、導電性を上げた場合には他の物質の静電気をもらう現象が生じる。ライデン瓶は、導体がガラス瓶の表面に塗られていることにより電気を貯めることができる。

 

帯電防止を行うには、表面比抵抗を10の6乗から10の11乗までの半導体領域に設計するのが経験的に好ましいとされる。研究結果によればインピーダンスの値で設計した方が実際の静電気故障とよく対応する。この結果は研究報告が少ないので特許ネタに使える。どのようにインピーダンスを測定したかにも依存し、それが特許のクレーム表現として使える。単なるパラメータ特許は成立しにくいが一ひねりすると商品に合わせた面白い特許になる。実際には科学的に同じ技術であっても、科学的な証拠が無いためにできる特許の権利書という側面を活用するネタである。

 

帯電防止技術に近い商品として電子写真システムがあるが、面白いのは電子写真システムに科学的に説明できない部分が未だに存在する点である。原理が説明できているから科学的に完成された商品、と思っている方も多い。しかし科学的に完璧に説明された商品であれば、教科書にもとづき製品設計を行うことができるはずだが、それができないのである。未だに経験に基づく部分が残っており、怪しい特許を量産できる分野となっている。

 

同じ画像形成システムであるが、後発のインクジェット(IJ)プリンターが普及したのは電子写真システムよりも機構が単純で科学的に解明しやすくコストダウンが容易だったためである。しかし、科学的にIJプリンターの限界が見えており、電子写真システムが今後も残っていく可能性が高いと思われる。電子写真プリンターの便利なところは、どのような紙に印刷しても同等品質が得られる点で、この長所は未だに他の方式がまねできないところである。

 

電子写真システムの科学的な解明が進まない点は、画像形成に使用するトナーを静電気で紙に転写している、電子写真のキモの部分である。大雑把には帯電防止技術と同様に半導体領域の材料でエンジン部分は設計されるが、その導電性と画質との関係は未だ経験の必要な世界である。

カテゴリー : 電気/電子材料 高分子

pagetop

2013.03/17 難燃剤の劣化

難燃性を要求される樹脂やゴム部品には難燃剤が添加されている。この難燃剤が劣化する問題についてあまり注目されていない。成形された樹脂の劣化試験で難燃性もチェックし、難燃性の性能が維持されていればそれで問題無しとされる。

 

しかし、リン酸エステル系難燃剤の多くは加水分解が進行しても難燃性が維持される。それは難燃化機構においてリン酸の構造で働くからである。また、ハロゲン系の難燃剤であればハロゲン原子が樹脂内に残存しておれば劣化試験において難燃性能は落ちない。

 

難燃剤の劣化で問題となるのは、難燃性能では無く、加水分解物で引き起こされる副作用である。劣化試験の中にこの副作用を確認する試験を入れておれば問題は生じないように見えるが、それが意外な落とし穴となることがある。すなわち実験室で行われる環境試験はあくまでもモデル試験であり、市場の環境すべてを表現できていると保証されていない。

 

樹脂の絶縁性が要求される分野では、促進劣化試験だけでは危険で、是非成分分析も実施したい。すなわち促進試験で導電性物質が増加していないかどうかのチェックである。加水分解物が樹脂内で拡散する場合を考慮すると、促進試験を行ったサンプルの抵抗測定だけでは不十分で、導電性物質の増加も調べておく必要がある。それはパーコレーション転移の問題が潜んでいるからである。

カテゴリー : 高分子

pagetop

2013.03/16 高分子の相溶

消しゴムを長期間、樹脂製のトレイの上に放置していたら、くっついていた、という体験は無いか?トレイがポリスチレン(PS)で、消しゴムがポリスチレンとポリブタジエンの共重合したゴム(SBR)の場合にはこのような現象が生じる。

 

これはSBRとPSが混ざりやすいためだ。SBRに含まれるポリスチレンの構造とトレイのポリスチレンとは同一構造なので分子間力が高まり、接触している界面で自然と分子同士が混ざり合いくっつく。1年以上放置してあった場合には、消しゴムが溶けたような状態になっている。

 

消しゴムとトレイの界面では、消しゴムに含まれるSBRの分子運動性の高い部分がトレイのPSの中に拡散して相溶という現象が生じている。すなわち相溶という現象は、高分子の構造が似たものどおし溶け合う現象である。このようにPSとSBRは、接触させても相溶という現象が生じる。

 

しかし、構造の異なるポリマーの組み合わせでは相溶は自然に生じない。水と油を混ぜた状態を想像して欲しい。二相に分離したまま放置しておいて一相になることは無い。界面も明確にできたままである。しかし、強引に撹拌すると均一になったように見える。が、すぐに油の粒が見えてきて2相に分離する。

 

水と油の場合は低分子なので室温で容易に分離するが、もし相溶しない2種類の高分子を高温度で混合し、急冷したらどうなるか。もし組み合わせた高分子のガラス転移点が50℃以上の場合であれば混合したときの状態を長期間維持している。すなわち混合したときの分散状態できまる構造のポリマーアロイを製造することが可能である。

 

例えば公知の混練方法でポリフェニレンスルフィド(PPS)と6ナイロンを混練するとその比率でコンパウンド中の分散状態が変化する。例えば一方が30%以下であれば数ミクロン以下の粒子が分散したような状態の構造であるが、一方が30%を超えた当たりから数十ミクロンから1mm程度の粒子までコンパウンドの中に観察される。

 

PPSに10%ほど6ナイロンをカオス混合すると透明な樹脂液が吐出される。そしてこれを急冷するとPPSと6ナイロンが相溶したコンパウンドが得られる。初めてPPSと6ナイロンが相溶した透明な樹脂液が吐出されるのを見たときに大変興奮した。高分子の相溶は分子構造が似ていなくともプロセスコントロールで実現できるという事例。特許は多数公開されている。

カテゴリー : 高分子

pagetop

2013.03/15 カオス混合との出会い

高分子の混練技術についてわかりやすく説明された書籍を見たことが無い。一見学術的に書かれていても、論理の緻密さに欠ける説明も多い。混練で起きる現象は設備と混練物との組み合わせで様々だから説明が難しいのは理解できる。

 

混練は剪断流動と伸張流動の二つの組み合わせで進行している、と大雑把に理解できればそれ以上の内容は実技の中で習得してゆく以外に方法はない。例えば、スクリューデザインをもとにシミュレーションを行ってもおおよその温度上昇曲線は当たるが、それ以上の情報はシミュレーション技術で得られない。このシミュレーションで得られる温度上昇曲線については、数回実際に混練を経験すれば予想できるようになる。混練技術については未だに経験が学術成果に勝る分野である。

 

30数年前にカオス混合という神秘的な混練の概念を教えて頂いた。パイ生地や餅つきで起きる混練の現象である。ロール混練でも起きているらしい、と教えられた。教科書にはロール混練で起きる現象は伸張流動と剪断流動としか書かれていない。また、カオス混合の概念も書かれていない。最近では偏心ロールをモデルに発生した流れを解析したカオス混合のシミュレーションによる説明が出てきたが、餅つきやパイ生地で発生している練り、という説明のほうがわかりやすい。

 

混沌(カオス)混練だから、それを連続生産の中で行ったらものすごいことが起きるのだろう、と若い時にロール混練を行いながら考えた。高純度SiCの発明を行ってから、混練技術を担当する機会が無かったが、退職前の5年間中間転写ベルトの押出成形を担当したときに、外部の樹脂メーカーに混練技術が無く良いコンパウンドを供給して頂けなかったので、自社開発することになった。製品化期限まで半年しかないので、「ここはカオスしかない」と決断し、若い頃のアイデアを実行したところ一発で成功した。

 

有名なフローリーハギンズ理論では否定されるPPSと6ナイロンの相溶現象を起こすことに成功した。それもコンパチビライザーを添加しないで実現できたのである。分子量分布を計測してみても分子の断裂は起きていない。混練だけで分子レベルの混合が進行したのである。高分子学会賞に推薦され報告しましたが残念ながら受賞できませんでした。しかし、PPSと6ナイロンが相溶し透明な樹脂液が連続して吐出された状態を見たときの感動は最高でした。学術では否定されても技術では実現されている世界が存在するのが高分子物理の現状である。

カテゴリー : 高分子

pagetop

2013.03/13 国内の射出成形会社

製造業が中国やベトナム、タイへ出て行く中、日本で頑張っている製造業もある。例えば射出成形メーカーは国内に50社前後ある。百円ショップの製品を見てもメイドインジャパンの印字がされている商品がある。説明文が日本語なので、表記は日本製で良いと思うが、多くは「made in JAPAN」と書いてある。

 

日本に製造業が皆無くなってしまうのか、とも感じたことがあったが、自動化が進んでいる製造業は、日本でも充分やっていける。日本製と書かずにあえて「made in JAPAN」と書いているようにも見える。

 

日本だけで射出成形事業を行っている会社は、30社あまりあり多くは金型技術も社内に持っている。100円ショップの製品重量を測定してみると100g以下の製品が多い。材料費は高々20円だろう。国内の射出成形メーカーの多くは単に成形機の自動化だけで無く、何か特徴を持っている。例えば迅速、衛生、複雑、精密などの熟語が会社案内に書かれている。

 

100円ショップに並んでいる日本製の商品からこれらの熟語は感じられないが、おそらく売れ筋商品の場合、100円ショップではQCDのバランスから日本製になっている事情もあると思われる。

 

国内の製造業に何を残すか、という議論は今も聞くが、経済原理により議論の結論が出る前に淘汰されてゆく。半導体メモリーは射出成形よりも高度な技術なので、云々という意見を聞くとモノ創りの本質を知らない意見だと思う。射出成形技術でも半導体メモリーの製造技術以上に高度な要素があることを知らない人が多い。

 

射出成形に関連した難解な物理現象として、例えばフローリーハギンズ理論という高分子の相溶理論があるが、まだ理論として完璧では無い。20世紀に半導体分野の理論のほとんどが確立されたが、高分子物理は、試験の成績で表現するとまだ55点。そのような状態でも製造技術として国内で成立している射出成形メーカーは、残りの45点分のノウハウを持っていることになる。

 

教科書に書かれている技術レベルと教科書には書かれていない技術レベルが存在することに気がつくと、国内に残っている射出成形会社の凄さが見えてくる。多くは中小企業だが、今回の補正予算では、この中小企業に活力を与える施策が盛り込まれている。ようやく日本の政治に製造業を大切にする動きが見えてきた。二番でも良い、という見識では日本に製造業は残らない。

カテゴリー : 高分子

pagetop

2013.03/12 難燃剤のブリードアウト

樹脂を難燃化するために難燃剤を添加する。難燃剤が無機フィラーであれば脆性の低下が、液状であれば可塑剤として働くために弾性率の低下が問題になる。樹脂を難燃化する時に力学物性の低下は避けられない問題である。力学物性のバランスをとるためにポリマーアロイという手段がある。

 

しかし、液状もしくはTgが低い難燃剤で力学物性の低下よりも問題が大きいのはブリードアウトという現象である。ブリードアウトという現象は身近な製品で誰でも経験しているはずです。例えば皮状のケミカルバッグやケミカルシューズ、電化製品例えばPCのマウスに使用されているゴム状の部分。長年使用していてべたべたしてきたことはありませんか。

 

これは、樹脂を柔らかくするために添加していた可塑剤が外に滲み出てきた現象です。構造が異なる分子を混ぜると相分離という現象が生じます。例えば水にヘキサンという有機液体を分散し激しく撹拌し静置しますと2層に分離します。これが相分離という現象で、構造が異なる分子どおしを混合しますと必ず生じる現象です。

 

樹脂に何か有機物を分散しても構造が異なれば相分離し、表面に浮き出てきます。これがブリードアウトという現象で樹脂製品の外観品質を悪化させます。ブリードアウトという現象は、物質の拡散で生じており、温度が高くなると早く発生するようになります。その時間スケールは物質の組み合わせで様々で有り、製品寿命の間に発生しないように材料設計することは可能で、樹脂製品の多くはそのように設計されています。

 

難燃剤のブリードアウトで見落としがちなのは、表面で難燃剤の濃度が高くなり、金属が接触していた場合には錆を引き起こしたり、電気製品であれば絶縁性を低下させたりする原因になる故障です。ゆえに難燃性樹脂の促進試験では、市場環境あるいは市場における使用方法を想定した促進試験が重要になってきます。

カテゴリー : 電気/電子材料 高分子

pagetop

2013.03/11 半導体領域の材料設計

1万Ωcmから10が10個前後並んだ領域までの体積固有抵抗を持つ材料を半導体という。下限を1000とか10万Ωcmとしている教科書もある。上限も12個程度10が並んだ領域まで半導体領域とする教科書もある。半導体とは、適当に電気を流してくれる材料なので、その物性も適当に扱われているように見える。

 

しかし、実用化するときには、厳密なスペックの中に物性をおさめなければならない。これが難しい。例えば、導電体であるカーボンや金属粉を絶縁体である高分子に分散して抵抗を調整しようとすると偏差が4桁以上ばらつく場合も出てくる。

 

パーコレーション転移が起きるためである。たまたま実験室で安定にできても安心できない。確実にパーコレーション転移を制御できる材料設計を行わない限り、自然現象に任せていてはロバストの高い商品はできない。

 

絶縁体に導体を分散して半導体領域の材料を設計する場合以外に、金属酸化物半導体もその抵抗は大きくばらつく。難黒鉛化カーボンもロットにより2桁程度抵抗偏差が生じる。半導体領域の材料は、うまく設計しない限り2桁以上は抵抗がばらつく、という常識を持っていた方が良い。たまたま測定値が安定な材料が得られたときに、その原因や理由が明らかになっていなければ安心してはいけない。

 

コニカへ転職して間もないときに帯電防止材料の新規アイデアを相談してきた人がおり、アイデアを話したところ、その後なしのつぶて。たまたま相談者と廊下で出会ったときに、進捗を聞いたところ、「うまく進捗しているからほっといてくれ」という意味に近いことを言われたので、ばらつきの制御だけは注意するようにアドバイスしたが、その1年後帯電防止層の品質問題が起きて、仕事が自分のところへ回ってきた。量産が始まったところで導電性が2桁程度ばらつき、問題だ、とのこと。帯電防止層の処方を見たら、ただ材料を2種類混ぜているだけで材料設計されていない処方であった。技術を甘くみてはいけない。

 

実は材料物性において、導電性はその偏差の大小が材料および設計方法により大きく異なる。力学物性よりも測定値の偏差は小さいと思っているととんでもない失敗をする。導体である銅でも純度が管理されなければ1桁程度ばらつく。半導体領域になるとそのばらつきが目立つようになるだけと考えると気楽だが、商品の中には1桁以内に偏差を抑えることが要求される場合もあるので高度な技術が必要になってくる。

 

この材料設計では、複合材料で半導体を製造する場合と単一組成で半導体を製造する場合とでは戦略が異なる。ただし、プロセスの負荷が小さくなるように設計する方針で考える、あるいは、プロセスの負荷が大きくなる場合には既存のプロセスに改良を加え生産の安定化設計を行うなど、共通する部分もある。大切なことは、半導体領域の材料設計が、絶縁体や導電体よりも安定した物性を造り込むことが難しい点を認識することである。

カテゴリー : 電気/電子材料 高分子

pagetop

2013.03/08 ポリカーボネート(PC)系ポリマーアロイ

かつてテレビや電化製品の外装材といえば、ABS樹脂が主流でした。しかし、最近はPCとABSをブレンドしたポリマーアロイがよく使われています。

 

PCはCDに使用されている光学特性に優れた樹脂です。しかし、耐衝撃特性(すなわち割れやすい)や流動性(射出成形時に複雑形状を作れない)が悪い、という欠点があります。高分子材料技術では、一成分のポリマーの物性を改良するためにブレンド技術がプロセスと処方の両面で開発されています。

 

PCとABSのポリマーアロイは、PCの物性を改良するために開発された、と教科書には書かれています。この説明はおそらく間違っていないでしょうが、その材料の射出成形体のきれいな外観を見ますと、ABSの安っぽい外観を改良するために考案されたような印象を持ちます。

 

最初にこの組み合わせを考えた人がどのようなコンセプトでポリマーアロイを設計したのか聞いてみたい気がしています。流動性を改良するためであれば、PCにナイロン樹脂をブレンドしても目的を達成できるからです。またPSをブレンドしても耐衝撃性や流動性をある程度改善できます。

 

確かにPCとABSのポリマーアロイPC/ABSの物性に及びませんが、コストはナイロン樹脂やPSをブレンドした方が安価です。コストや物性のバランスを見ているとPC/ABSの選ばれている理由が良好な外観にあるように思えてきます。

 

このPC/ABSのポリマーアロイにも泣き所が有り、少し高度な射出成形技術が要求されると言うことです。すなわち多成分系のブレンドなので、金型温度などの射出成形条件をうまく管理しなければ、テープ剥離というような外観の品質問題が起きやすい。この品質問題はこれまで射出成形技術の問題とされていましたが、コンパウンドの混練に先端技術を用いますと皆無にできます。すなわちコンパウンドの寄与が大きい故障です。もしご興味がございましたら弊社へお問い合わせください。

カテゴリー : 高分子

pagetop